982 resultados para Cloning of cDNA encoding Large isoform of rubisco activase


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the isolation of a Chlamydomonas reinhardtii cDNA that encodes the β-subunit of tryptophan synthase (TSB). This cDNA was cloned by functional complementation of a trp-operon-deleted strain of Escherichia coli. Hybridization analysis indicated that the gene exists in a single copy. The predicted amino acid sequence showed the greatest identity to TSB polypeptides from other photosynthetic organisms. With the goal of identifying mutations in the gene encoding this enzyme, we isolated 11 recessive and 1 dominant single-gene mutation that conferred resistance to 5-fluoroindole. These mutations fell into three complementation groups, MAA2, MAA7, and TAR1. In vitro assays showed that mutations at each of these loci affected TSB activity. Restriction fragment-length polymorphism analysis suggested that MAA7 encodes TSB. MAA2 and TAR1 may act to regulate the activity of MAA7 or its protein product.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the dinoflagellate Amphidinium carterae, photoadaptation involves changes in the transcription of genes encoding both of the major classes of light-harvesting proteins, the peridinin chlorophyll a proteins (PCPs) and the major a/c-containing intrinsic light-harvesting proteins (LHCs). PCP and LHC transcript levels were increased up to 86- and 6-fold higher, respectively, under low-light conditions relative to cells grown at high illumination. These increases in transcript abundance were accompanied by decreases in the extent of methylation of CpG and CpNpG motifs within or near PCP- and LHC-coding regions. Cytosine methylation levels in A. carterae are therefore nonstatic and may vary with environmental conditions in a manner suggestive of involvement in the regulation of gene expression. However, chemically induced undermethylation was insufficient in activating transcription, because treatment with two methylation inhibitors had no effect on PCP mRNA or protein levels. Regulation of gene activity through changes in DNA methylation has traditionally been assumed to be restricted to higher eukaryotes (deuterostomes and green plants); however, the atypically large genomes of dinoflagellates may have generated the requirement for systems of this type in a relatively “primitive” organism. Dinoflagellates may therefore provide a unique perspective on the evolution of eukaryotic DNA-methylation systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The highest concentrations of prostaglandins in nature are found in the Caribbean gorgonian Plexaura homomalla. Depending on its geographical location, this coral contains prostaglandins with typical mammalian stereochemistry (15S-hydroxy) or the unusual 15R-prostaglandins. Their metabolic origin has remained the subject of mechanistic speculations for three decades. Here, we report the structure of a type of cyclooxygenase (COX) that catalyzes transformation of arachidonic acid into 15R-prostaglandins. Using a homology-based reverse transcriptase–PCR strategy, we cloned a cDNA corresponding to a COX protein from the R variety of P. homomalla. The deduced peptide sequence shows 80% identity with the 15S-specific coral COX from the Arctic soft coral Gersemia fruticosa and ≈50% identity to mammalian COX-1 and COX-2. The predicted tertiary structure shows high homology with mammalian COX isozymes having all of the characteristic structural units and the amino acid residues important in catalysis. Some structural differences are apparent around the peroxidase active site, in the membrane-binding domain, and in the pattern of glycosylation. When expressed in Sf9 cells, the P. homomalla enzyme forms a 15R-prostaglandin endoperoxide together with 11R-hydroxyeicosatetraenoic acid and 15R-hydroxyeicosatetraenoic acid as by-products. The endoperoxide gives rise to 15R-prostaglandins and 12R-hydroxyheptadecatrienoic acid, identified by comparison to authentic standards. Evaluation of the structural differences of this 15R-COX isozyme should provide new insights into the substrate binding and stereospecificity of the dioxygenation reaction of arachidonic acid in the cyclooxygenase active site.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hd6 is a quantitative trait locus involved in rice photoperiod sensitivity. It was detected in backcross progeny derived from a cross between the japonica variety Nipponbare and the indica variety Kasalath. To isolate a gene at Hd6, we used a large segregating population for the high-resolution and fine-scale mapping of Hd6 and constructed genomic clone contigs around the Hd6 region. Linkage analysis with P1-derived artificial chromosome clone-derived DNA markers delimited Hd6 to a 26.4-kb genomic region. We identified a gene encoding the α subunit of protein kinase CK2 (CK2α) in this region. The Nipponbare allele of CK2α contains a premature stop codon, and the resulting truncated product is undoubtedly nonfunctional. Genetic complementation analysis revealed that the Kasalath allele of CK2α increases days-to-heading. Map-based cloning with advanced backcross progeny enabled us to identify a gene underlying a quantitative trait locus even though it exhibited a relatively small effect on the phenotype.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Streptomyces lavendulae produces complestatin, a cyclic peptide natural product that antagonizes pharmacologically relevant protein–protein interactions including formation of the C4b,2b complex in the complement cascade and gp120-CD4 binding in the HIV life cycle. Complestatin, a member of the vancomycin group of natural products, consists of an α-ketoacyl hexapeptide backbone modified by oxidative phenolic couplings and halogenations. The entire complestatin biosynthetic and regulatory gene cluster spanning ca. 50 kb was cloned and sequenced. It consisted of 16 ORFs, encoding proteins homologous to nonribosomal peptide synthetases, cytochrome P450-related oxidases, ferredoxins, nonheme halogenases, four enzymes involved in 4-hydroxyphenylglycine (Hpg) biosynthesis, transcriptional regulators, and ABC transporters. The nonribosomal peptide synthetase consisted of a priming module, six extending modules, and a terminal thioesterase; their arrangement and domain content was entirely consistent with functions required for the biosynthesis of a heptapeptide or α-ketoacyl hexapeptide backbone. Two oxidase genes were proposed to be responsible for the construction of the unique aryl-ether-aryl-aryl linkage on the linear heptapeptide intermediate. Hpg, 3,5-dichloro-Hpg, and 3,5-dichloro-hydroxybenzoylformate are unusual building blocks that repesent five of the seven requisite monomers in the complestatin peptide. Heterologous expression and biochemical analysis of 4-hydroxyphenylglycine transaminon confirmed its role as an aminotransferase responsible for formation of all three precursors. The close similarity but functional divergence between complestatin and chloroeremomycin biosynthetic genes also presents a unique opportunity for the construction of hybrid vancomycin-type antibiotics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In spite of much effort, no one has succeeded in isolating and characterizing the enzyme(s) responsible for synthesis of cellulose, the major cell wall polymer of plants. We have characterized two cotton (Gossypium hirsutum) cDNA clones and identified one rice (Oryza sativa) cDNA that are homologs of the bacterial celA genes that encode the catalytic subunit of cellulose synthase. Three regions in the deduced amino acid sequences of the plant celA gene products are conserved with respect to the proteins encoded by bacterial celA genes. Within these conserved regions, there are four highly conserved subdomains previously suggested to be critical for catalysis and/or binding of the substrate UDP-glucose (UDP-Glc). An overexpressed DNA segment of the cotton celA1 gene encodes a polypeptide fragment that spans these domains and binds UDP-Glc, while a similar fragment having one of these domains deleted does not. The plant celA genes show little homology at the N- and C-terminal regions and also contain two internal insertions of sequence, one conserved and one hypervariable, that are not found in the bacterial gene sequences. Cotton celA1 and celA2 genes are expressed at high levels during active secondary wall cellulose synthesis in developing cotton fibers. Genomic Southern blot analyses in cotton demonstrate that celA forms a small gene family.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated after exposing cells to UV-radiation or cisplatin but not several other DNA damaging agents. This novel covalent modification of Pol II LS occurs within 15 min of exposing cells to UV-radiation and persists for about 8-12 hr. Ubiquitinated Pol II LS is also phosphorylated on the C-terminal domain. UV-induced ubiquitination of Pol II LS is deficient in fibroblasts from individuals with two forms of Cockayne syndrome (CS-A and CS-B), a rare disorder in which TCR is disrupted. UV-induced ubiquitination of Pol II LS can be restored by introducing cDNA constructs encoding the CSA or CSB genes, respectively, into CS-A or CS-B fibroblasts. These results suggest that ubiquitination of Pol II LS plays a role in the recognition and/or repair of damage to actively transcribed genes. Alternatively, these findings may reflect a role played by the CSA and CSB gene products in transcription.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

After birth, most of insulin-like growth factor I and II (IGFs) circulate as a ternary complex formed by the association of IGF binding protein 3-IGF complexes with a serum protein called acid-labile subunit (ALS). ALS retains the IGF binding protein-3-IGF complexes in the vascular compartment and extends the t1/2 of IGFs in the circulation. Synthesis of ALS occurs mainly in liver after birth and is stimulated by growth hormone. To study the basis for this regulation, we cloned and characterized the mouse ALS gene. Comparison of genomic and cDNA sequences indicated that the gene is composed of two exons separated by a 1126-bp intron. Exon 1 encodes the first 5 amino acids of the signal peptide and contributes the first nucleotide of codon 6. Exon 2 contributes the last 2 nt of codon 6 and encodes the remaining 17 amino acids of the signal peptide as well as the 580 amino acids of the mature protein. The polyadenylylation signal, ATTAAA, is located 241 bp from the termination codon. The cDNA and genomic DNA diverge 16 bp downstream from this signal. Transcription initiation was mapped to 11 sites over a 140-bp TATA-less region. The DNA fragment extending from nt -805 to -11 (ATG, +1) directed basal and growth hormone-regulated expression of a luciferase reporter plasmid in the rat liver cell line H4-II-E. Finally, the ALS gene was mapped to mouse chromosome 17 by fluorescence in situ hybridization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The essential eukaryotic pre-mRNA splicing factor U2AF (U2 small nuclear ribonucleoprotein auxiliary factor) is required to specify the 3' splice at an early step in spliceosome assembly. U2AF binds site-specifically to the intron polypyrimidine tract and recruits U2 small nuclear ribonucleoprotein to the branch site. Human U2AF (hU2AF) is a heterodimer composed of a large (hU2AF65) and small (hU2AF35) subunit. Although these proteins associate in a tight complex, the biochemical requirement for U2AF activity can be satisfied solely by the large subunit. The requirement for the small subunit in splicing has remained enigmatic. No biochemical activity has been found for hU2AF35 and it has been implicated in splicing only indirectly by its interaction with known splicing factors. In the absence of a biochemical assay, we have taken a genetic approach to investigate the function of the small subunit in the fruit fly Drosophila melanogaster. A cDNA clone encoding the small subunit of Drosophila U2AF (dU2AF38) has been isolated and sequenced. The dU2AF38 protein is highly homologous to hU2AF35 containing a conserved central arginine- and serine-rich (RS) domain. A recessive P-element insertion mutation affecting dU2AF38 causes a reduction in viability and fertility and morphological bristle defects. Consistent with a general role in splicing, a null allele of dU2AF38 is fully penetrant recessive lethal, like null alleles of the Drosophila U2AF large subunit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We previously reported that KIF3A and KIF3B form a heterodimer that functions as a microtubule-based fast anterograde translocator of membranous organelles. We have also shown that this KIF3A/3B forms a complex with other associated polypeptides, named kinesin superfamily-associated protein 3 (KAP3). In the present study, we purified KAP3 protein by immunoprecipitation using anti-KIF3B antibody from mouse testis. Microsequencing was carried out, and we cloned the full-length KAP3 cDNA from a mouse brain cDNA library. Two isoforms of KAP3 exist [KAP3A (793 aa) and KAP3B (772 aa)], generated by alternative splicing in the carboxyl terminus region. Their amino acid sequences have no homology with those of any other known proteins, and prediction of their secondary structure indicated that almost the entire KAP3 molecule is alpha-helical. We produced recombinant KAP3 and KIF3A/3B using a baculovirus-Sf9 expression system. A reconstruction study in Sf9 cells revealed that KAP3 is a globular protein that binds to the tail domain of KIF3A/3B. The immunolocalization pattern of KAP3 was similar to that of KIF3A/3B in nerve cells. In addition, we found that KAP3 does not affect the motor activity of KIF3A/3B. KAP3 was associated with a membrane-bound form of KIF3A/3B in a fractional immunoprecipitation experiment, and since the KIF3 complex was found to bind to membranous organelles in an EM study, KAP3 may regulate membrane binding of the KIF3 complex.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sigma-ligands comprise several chemically unrelated drugs such as haloperidol, pentazocine, and ditolylguanidine, which bind to a family of low molecular mass proteins in the endoplasmic reticulum. These so-called sigma-receptors are believed to mediate various pharmacological effects of sigma-ligands by as yet unknown mechanisms. Based on their opposite enantioselectivity for benzomorphans and different molecular masses, two subtypes are differentiated. We purified the sigma1-binding site as a single 30-kDa protein from guinea pig liver employing the benzomorphan(+)[3H]pentazocine and the arylazide (-)[3H]azidopamil as specific probes. The purified (+)[3H]pentazocine-binding protein retained its high affinity for haloperidol, pentazocine, and ditolylguanidine. Partial amino acid sequence obtained after trypsinolysis revealed no homology to known proteins. Radiation inactivation of the pentazocine-labeled sigma1-binding site yielded a molecular mass of 24 +/- 2 kDa. The corresponding cDNA was cloned using degenerate oligonucleotides and cDNA library screening. Its open reading frame encoded a 25.3-kDa protein with at least one putative transmembrane segment. The protein expressed in yeast cells transformed with the cDNA showed the pharmacological characteristics of the brain and liver sigma1-binding site. The deduced amino acid sequence was structurally unrelated to known mammalian proteins but it shared homology with fungal proteins involved in sterol synthesis. Northern blots showed high densities of the sigma1-binding site mRNA in sterol-producing tissues. This is also in agreement with the known ability of sigma1-binding sites to interact with steroids, such as progesterone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Sanfilippo syndrome type B is a lysosomal storage disorder caused by deficiency of alpha-N-acetylglucosaminidase; it is characterized by profound mental deterioration in childhood and death in the second decade. For understanding the molecular genetics of the disease and for future development of DNA-based therapy, we have cloned the cDNA and gene encoding alpha-N-acetylglucosaminidase. Cloning started with purification of the bovine enzyme and use of a conserved oligonucleotide sequence to probe a human cDNA library. The cDNA sequence was found to encode a protein of 743 amino acids, with a 20- to 23-aa signal peptide immediately preceding the amino terminus of the tissue enzyme and with six potential N-glycosylation sites. The 8.5-kb gene (NAGLU), interrupted by 5 introns, was localized to the 5'-flanking sequence of a known gene, EDH17B, on chromosome 17q21. Five mutations were identified in cells of patients with Sanfilippo syndrome type B: 503del10, R297X, R626X, R643H, and R674H. The occurrence of a frameshift and a nonsense mutation in homozygous form confirms the identity of the NAGLU gene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prion diseases are a group of fatal neurodegenerative disorders that are unique in being infectious, genetic, and sporadic in origin. Infectious cases are caused by prions, which are composed primarily of PrPSc, a posttranslationally modified isoform of the normal cellular prion protein PrPC. Inherited cases are linked to insertional or point mutations in the host gene encoding PrPC. To investigate the molecular mechanisms underlying inherited prion diseases, we have constructed stably transfected Chinese hamster ovary cells that express mouse PrPs homologous to two human PrPs associated with familial Creutzfeldt-Jakob disease. One mouse PrP molecule carries a Glu-->Lys substitution at codon 199, and the other carries an insertion of six additional octapeptide repeats between codons 51 and 90. We find that both of these mutant PrPs display several biochemical hallmarks of PrPSc when synthesized in cell culture. Unlike wild-type PrP, the mutant proteins are detergent insoluble and are relatively resistant to digestion by proteinase K, yielding an N-terminally truncated core fragment of 27-30 kDa. Pulse-chase labeling experiments demonstrate that these properties are acquired posttranslationally, and are accompanied by increased metabolic stability of the protein. Our results provide the first evidence that a molecule with properties reminiscent of PrPSc can be generated de novo in cultured cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The translocation t(10;11)(p13;q14) is a recurring chromosomal abnormality that has been observed in patients with acute lymphoblastic leukemia as well as acute myeloid leukemia. We have recently reported that the monocytic cell line U937 has a t(10;11)(p13;q14) translocation. Using a combination of positional cloning and candidate gene approach, we cloned the breakpoint and were able to show that AF10 is fused to a novel gene that we named CALM (Clathrin Assembly Lymphoid Myeloid leukemia gene) located at 11q14. AF10, a putative transcription factor, had recently been cloned as one of the fusion partners of MLL. CALM has a very high homology in its N-terminal third to the murine ap-3 gene which is one of the clathrin assembly proteins. The N-terminal region of ap-3 has been shown to bind to clathrin and to have a high-affinity binding site for phosphoinositols. The identification of the CALM/AF10 fusion gene in the widely used U937 cell line will contribute to our understanding of the malignant phenotype of this line.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multimeric protein complexes in chloroplasts and mitochondria are generally composed of products of both nuclear and organelle genes of the cell. A central problem of eukaryotic cell biology is to identify and understand the molecular mechanisms for integrating the production and accumulation of the products of the two separate genomes. Ribulose bisphosphate carboxylase (Rubisco) is localized in the chloroplasts of photosynthetic eukaryotic cells and is composed of small subunits (SS) and large subunits (LS) coded for by nuclear rbcS and chloroplast rbcL genes, respectively. Transgenic tobacco plants containing antisense rbcS DNA have reduced levels of rbcS mRNA, normal levels of rbcL mRNA, and coordinately reduced LS and SS proteins. Our previous experiments indicated that the rate of translation of rbcL mRNA might be reduced in some antisense plants; direct evidence is presented here. After a short-term pulse there is less labeled LS protein in the transgenic plants than in wild-type plants, indicating that LS accumulation is controlled in the mutants at the translational and/or posttranslational levels. Consistent with a primary restriction at translation, fewer rbcL mRNAs are associated with polysomes of normal size and more are free or are associated with only a few ribosomes in the antisense plants. Effects of the rbcS antisense mutation on mRNA and protein accumulation, as well as on the distribution of mRNAs on polysomes, appear to be minimal for other chloroplast and nuclear photosynthetic genes. Our results suggest that SS protein abundance specifically contributes to the regulation of LS protein accumulation at the level of rbcL translation initiation.