944 resultados para Cloning Vectors
Resumo:
A 50-kDa hemolymph protein, having strong affinity to the cell wall of Gram(-) bacteria, was purified from the hemolymph of the silkworm, Bombyx mori. The cDNA encoding this Gram(-) bacteria-binding protein (GNBP) was isolated from an immunized silkworm fat body cDNA library and sequenced. Comparison of the deduced amino acid sequence with known sequences revealed that GNBP contained a region displaying significant homology to the putative catalytic region of a group of bacterial beta-1,3 glucanases and beta-1,3-1,4 glucanases. Silkworm GNBP was also shown to have amino acid sequence similarity to the vertebrate lipopolysaccharide receptor CD14 and was recognized specifically by a polygonal anti-CD14 antibody. Northern blot analysis showed that GNBP was constitutively expressed in fat body, as well as in cuticular epithelial cells of naive silkworms. Intense transcription was, however, rapidly induced following a cuticular or hemoceolien bacterial challenge. An mRNA that hybridized with GNBP cDNA was also found in the l(2)mbn immunocompetent Drosophila cell line. These observations suggest that GNBP is an inducible acute phase protein implicated in the immune response of the silkworm and perhaps other insects.
Resumo:
Sigma-ligands comprise several chemically unrelated drugs such as haloperidol, pentazocine, and ditolylguanidine, which bind to a family of low molecular mass proteins in the endoplasmic reticulum. These so-called sigma-receptors are believed to mediate various pharmacological effects of sigma-ligands by as yet unknown mechanisms. Based on their opposite enantioselectivity for benzomorphans and different molecular masses, two subtypes are differentiated. We purified the sigma1-binding site as a single 30-kDa protein from guinea pig liver employing the benzomorphan(+)[3H]pentazocine and the arylazide (-)[3H]azidopamil as specific probes. The purified (+)[3H]pentazocine-binding protein retained its high affinity for haloperidol, pentazocine, and ditolylguanidine. Partial amino acid sequence obtained after trypsinolysis revealed no homology to known proteins. Radiation inactivation of the pentazocine-labeled sigma1-binding site yielded a molecular mass of 24 +/- 2 kDa. The corresponding cDNA was cloned using degenerate oligonucleotides and cDNA library screening. Its open reading frame encoded a 25.3-kDa protein with at least one putative transmembrane segment. The protein expressed in yeast cells transformed with the cDNA showed the pharmacological characteristics of the brain and liver sigma1-binding site. The deduced amino acid sequence was structurally unrelated to known mammalian proteins but it shared homology with fungal proteins involved in sterol synthesis. Northern blots showed high densities of the sigma1-binding site mRNA in sterol-producing tissues. This is also in agreement with the known ability of sigma1-binding sites to interact with steroids, such as progesterone.
Resumo:
The bacterial phosphoenolpyruvate/glycose phosphotransferase system (PTS) comprises a group of proteins that catalyze the transfer of the phosphoryl group from phosphoenolpyruvate (PEP) to sugars concomitant with their translocation. The first two steps of the phosphotransfer sequence are PEP <--> Enzyme I (EI) <--> HPr (the histidine-containing phosphocarrier protein). We have proposed that many functions of the PTS are regulated by EI, which undergoes a monomer/dimer transition. EI monomer (63.5 kDa) comprises two major domains: a flexible C-terminal domain (EI-C) and a protease-resistant, structurally stable N-terminal domain (EI-N) containing the active site His. Trypsin treatment of Salmonella typhimurium EI yielded EI-N, designated EI-N(t). Homogeneous recombinant Escherichia coli EI-N [i.e., EI-N(r)], has now been prepared in quantity, shows the expected thermodynamic unfolding properties and, similarly to EI-N(t), is phosphorylated by phospho-HPr, but not by PEP. In addition, binding of EI-N(r) to HPr was studied by isothermal titration calorimetry: K/a = 1.4 x 10(5) M(-1) and delta H = +8.8 kcal x mol(-1). Both values are comparable to those for HPr binding to intact EI. Fluorescence anisotropy [dansyl-EI-N(r)] and gel filtration of EI-N(r) show that it does not dimerize. These results emphasize the role of EI-C in dimerization and the regulation of intact EI.
Resumo:
The selective production of monoclonal antibodies (mAbs) reacting with defined cell surface-expressed molecules is now readily accomplished with an immunological subtraction approach, surface-epitope masking (SEM). Using SEM, prostate carcinoma (Pro 1.5) mAbs have been developed that react with tumor-associated antigens expressed on human prostate cancer cell lines and patient-derived carcinomas. Screening a human LNCaP prostate cancer cDNA expression library with the Pro 1.5 mAb identifies a gene, prostate carcinoma tumor antigen-1 (PCTA-1). PCTA-1 encodes a secreted protein of approximately 35 kDa that shares approximately 40% sequence homology with the N-amino terminal region of members of the S-type galactose-binding lectin (galectin) gene family. Specific galectins are found on the surface of human and marine neoplastic cells and have been implicated in tumorigenesis and metastasis. Primer pairs within the 3' untranslated region of PCTA-1 and reverse transcription-PCR demonstrate selective expression of PCTA-1 by prostate carcinomas versus normal prostate and benign prostatic hypertrophy. These findings document the use of the SEM procedure for generating mAbs reacting with tumor-associated antigens expressed on human prostate cancers. The SEM-derived mAbs have been used for expression cloning the gene encoding this human tumor antigen. The approaches described in this paper, SEM combined with expression cloning, should prove of wide utility for developing immunological reagents specific for and identifying genes relevant to human cancer.
Resumo:
A human cDNA sequence homologous to human deoxycytidine kinase (dCK; EC 2.7.1.74) was identified in the GenBank sequence data base. The longest open reading frame encoded a protein that was 48% identical to dCK at the amino acid level. The cDNA was expressed in Escherichia coli and shown to encode a protein with the same substrate specificity as described for the mitochondrial deoxyguanosine kinase (dGK; EC 2.7.1.113). The N terminus of the deduced amino acid sequence had properties characteristic for a mitochondrial translocation signal, and cleavage at a putative mitochondrial peptidase cleavage site would give a mature protein size of 28 kDa. Northern blot analysis determined the length of dGK mRNA to 1.3 kbp with no cross-hybridization to the 2.8-kbp dCK mRNA. dGK mRNA was detected in all tissues investigated with the highest expression levels in muscle, brain, liver, and lymphoid tissues. Alignment of the dGK and herpes simplex virus type 1 thymidine kinase amino acid sequences showed that five regions, including the substrate-binding pocket and the ATP-binding glycine loop, were also conserved in dGK. To our knowledge, this is the first report of a cloned mitochondrial nucleoside kinase and the first demonstration of a general sequence homology between two mammalian deoxyribonucleoside kinases. Our findings suggest that dCK and dGK are evolutionarily related, as well as related to the family of herpes virus thymidine kinases.
Resumo:
Previously, we reported that a 61-bp subgenomic HBV DNA sequence (designated as 15AB, nt 1855-1915) is a hot spot for genomic recombination and that a cellular protein binding to 15AB may be the putative recombinogenic protein. In the present study, we established the existence of a 15AB-like sequence in human and rat chromosomal DNA by Southern blot analysis. The 15AB-like sequence isolated from the rat chromosome demonstrated a 80.9% identity with 5'-CCAAGCTGTGCCTTGGGTGGC-3', at 1872-1892 of the hepatitis B virus genome, thought to be the essential region for recombination. Interestingly, this 15AB-like sequence also contained the pentanucleotide motifs GCTGG and CCAGC as an inverted repeat, part of the chi known hot spot for recombination in Escherichia coli. Importantly, a portion of the 15AB-like sequence is homologous (82.1%, 23/28 bp) to break point clusters of the human promyelocytic leukemia (PML) gene, characterized by a translocation [t(15;17)], and to rearranged mouse DNA for the immunoglobulin kappa light chain. Moreover, 15AB and 15AB-like sequences have striking homologies (12/15 = 80.0% and 13/15 = 86.7%, respectively) to the consensus sequence for topoisomerase II. Our present results suggest that this 15AB-like sequence in the rat genome might be a recombinogenic candidate triggering genomic instability in carcinogenesis.
Resumo:
A reverse genetics approach was applied to generate a chimeric nonsegmented negative strand RNA virus, rabies virus (RV) of the Rhabdoviridae family, that expresses a foreign protein. DNA constructs containing the entire open reading frame of the bacterial chloramphenicol acetyltransferase (CAT) gene and an upstream RV cistron border sequence were inserted either into the nontranslated pseudogene region of a full-length cDNA copy of the RV genome or exchanged with the pseudogene region. After intracellular T7 RNA polymerase-driven expression of full-length antigenome RNA transcripts and RV nucleoprotein, phosphoprotein and polymerase from transfected plasmids, RVs transcribing novel monocistronic mRNAs and expressing CAT at high levels, were recovered. The chimeric viruses possessed the growth characteristics of standard RV and were genetically stable upon serial cell culture passages. CAT activity was still observed in cell cultures infected with viruses passaged for more than 25 times. Based on the unprecedented stability of the chimeric RNA genomes, which is most likely due to the structure of the rhabdoviral ribonucleoprotein complex, we predict the successful future use of recombinant rhabdovirus vectors for displaying foreign antigens or delivering therapeutic genes.
Resumo:
Plants need to avoid or dissipate excess light energy to protect photosystem II (PSII) from photoinhibitory damage. Higher plants have a conserved system that dissipates excess energy as heat in the light-harvesting complexes of PSII that depends on the transthylakoid delta pH and violaxanthin de-epoxidase (VDE) activity. To our knowledge, we report the first cloning of a cDNA encoding VDE and expression of functional enzyme in Escherichia coli. VDE is nuclear encoded and has a transit peptide with characteristic features of other lumen-localized proteins. The cDNA encodes a putative polypeptide of 473 aa with a calculated molecular mass of 54,447 Da. Cleavage of the transit peptide results in a mature putative polypeptide of 348 aa with a calculated molecular mass of 39,929 Da, close to the apparent mass of the purified enzyme (43 kDa). The protein has three interesting domains including (i) a cysteine-rich region, (ii) a lipocalin signature, and (iii) a highly charged region. The E. coli expressed enzyme de-epoxidizes violaxanthin sequentially to antheraxanthin and zeaxanthin, and is inhibited by dithiothreitol, similar to VDE purified from chloroplasts. This confirms that the cDNA encodes an authentic VDE of a higher plant and is unequivocal evidence that the same enzyme catalyzes the two-step mono de-epoxidation reaction. The cloning of VDE opens new opportunities for examining the function and evolution of the xanthophyll cycle, and possibly enhancing light-stress tolerance of plants.
Resumo:
We report the molecular cloning of the first beta-1,3 glucanase from animal tissue. Three peptide sequences were obtained from beta-1,3 glucanase that had been purified from eggs of the sea urchin Strongylocentrotus purpuratus and the gene was cloned by PCR using oligonucleotides deduced from the peptide sequences. The full-length cDNA shows a predicted enzyme structure of 499 aa with a hydrophobic signal sequence. A 3.2-kb message is present in eggs, during early embryogenesis, and in adult gut tissue. A polyclonal antibody to the native 68-kDa enzyme recognizes a single band during early embryogenesis that reappears in the adult gut, and recognizes a 57-kDa fusion protein made from a full-length cDNA clone for beta-1,3 glucanase. The identity of this molecule as beta-1,3 glucanase is confirmed by sequence homology, by the presence of all three peptide sequences in the deduced amino acid sequence, and by the recognition of the bacterial fusion protein by the antibody directed against the native enzyme. Data base searches show significant homology at the amino acid level to beta-1,3 glucanases from two species of bacteria and a clotting factor from the horseshoe crab. The homology with the bacteria is centered in a 304-aa region in which there are seven scattered regions of high homology between the four divergent species. These four species were also found to have two homologous regions in common with more distantly related plant, fungal, and bacterial proteins. A global phylogeny based on these regions strongly suggests that the glucanases are a very ancient family of genes. In particular, there is an especially deep split within genes taken from the bacterial genus Bacillus.
Resumo:
Matrix metalloproteinases (MMPs) of regenerating urodele limbs have been suggested to play crucial roles in the process of the dedifferentiation of cells in the damaged tissues and the ensuing blastema formation because the activation of MMPs is an early and conspicuous event occurring in the amputated limb. MMP cDNAs were cloned as products of the reverse transcription-PCR from cDNA libraries of newt limbs, and their structures were characterized. Three cDNAs encoding newt MMPs (2D-1, 2D-19, and 2D-24) have been cloned from second day postamputation regenerating limbs, and a cDNA (EB-1) was cloned from early bud-stage regenerating limbs. These cDNAs included the full-length coding regions. The deduced amino acid sequences of 2D-1, 2D-19, 2D-24, and EB-1 had a homology with mammalian MMP9, MMP3/10, MMP3/10, and MMP13, respectively. The basic motif of these newt MMP genes was similar to mammalian counterparts and contained regions encoding a putative signal sequence, a propeptide, an active site with three zinc-binding histidine residues, a calcium-binding domain, a hemopexin region, and three key cysteine residues. However, some unique molecular evolutionary features were also found in the newt MMPs. cDNAs of 2D-19 and 2D-24 contained a specific insertion and deletion, respectively. The insertion of 2D-19 is threonine-rich, similar to the threonine cluster found in the collagenase-like sea urchin hatching enzyme. Northern blot analysis showed that the expression levels of the newt MMPs were dramatically increased after amputation, suggesting that they play an important role(s) in tissue remodeling of the regenerating limb.
Resumo:
We have cloned a novel member of the nuclear receptor superfamily. The cDNA of clone 29 was isolated from a rat prostate cDNA library and it encodes a protein of 485 amino acid residues with a calculated molecular weight of 54.2 kDa. Clone 29 protein is unique in that it is highly homologous to the rat estrogen receptor (ER) protein, particularly in the DNA-binding domain (95%) and in the C-terminal ligand-binding domain (55%). Expression of clone 29 in rat tissues was investigated by in situ hybridization and prominent expression was found in prostate and ovary. In the prostate clone 29 is expressed in the epithelial cells of the secretory alveoli, whereas in the ovary the granuloma cells in primary, secondary, and mature follicles showed expression of clone 29. Saturation ligand-binding analysis of in vitro synthesized clone 29 protein revealed a single binding component for 17beta-estradiol (E2) with high affinity (Kd= 0.6 nM). In ligand-competition experiments the binding affinity decreased in the order E2 > diethylstilbestrol > estriol > estrone > 5alpha-androstane-3beta,17beta-diol >> testosterone = progesterone = corticosterone = 5alpha-androstane-3alpha,17beta-diol. In cotransfection experiments of Chinese hamster ovary cells with a clone 29 expression vector and an estrogen-regulated reporter gene, maximal stimulation (about 3-fold) of reporter gene activity was found during incubation with 10 nM of E2. Neither progesterone, testosterone, dexamethasone, thyroid hormone, all-trans-retinoic acid, nor 5alpha-androstane-3alpha,I7beta-diol could stimulate reporter gene activity, whereas estrone and 5alpha-androstane-3beta,17beta-diol did. We conclude that clone 29 cDNA encodes a novel rat ER, which we suggest be named rat ERbeta to distinguish it from the previously cloned ER (ERalpha) from rat uterus.
Resumo:
The mannan chains of Kluyveromyces lactis mannoproteins are similar to those of Saccharomyces cerevisiae except that they lack mannose phosphate and have terminal alpha1-->2-linked N-acetylglucosamine. The biosynthesis of these chains probably occurs in the lumen of the Golgi apparatus, by analogy to S. cerevisiae. The sugar donors, GDP-mannose and UDP-GlcNAc, must first be transported from the cytosol, their site of synthesis, via specific Golgi membrane transporters into the lumen where they are substrates in the biosynthesis of these mannoproteins. A mutant of K. lactis, mnn2-2, that lacks terminal N-acetylglucosamine in its mannan chains in vivo, has recently been characterized and shown to have a specific defect in transport of UDP-GlcNAc into the lumen of Golgi vesicles in vitro. We have now cloned the gene encoding the K. lactis Golgi membrane UDP-GlcNAc transporter by complementation of the mnn2-2 mutation. The mnn2-2 mutant was transformed with a genomic library from wild-type K. lactis in a pKD1-derived vector; transformants were isolated and phenotypic correction was monitored following cell surface labeling with fluorescein isothiocyanate conjugated to Griffonia simplicifolia II lectin, which binds terminal N-acetylglucosamine, and a fluorescent activated cell sorter. A 2.4-kb DNA fragment was found to restore the wild-type lectin binding phenotype. Upon loss of the plasmid containing this fragment, reversion to the mutant phenotype occurred. The above fragment contained an open reading frame for a multitransmembrane spanning protein of 328 amino acids. The protein contains a leucine zipper motif and has high homology to predicted proteins from S. cerevisiae and C. elegans. In an assay in vitro, Golgi vesicles isolated from the transformant had regained their ability to transport UDP-GlcNAc. Taken together, the above results strongly suggest that the cloned gene encodes the Golgi UDP-GlcNAc transporter of K. lactis.
Resumo:
A novel human cDNA encoding a cytosolic 62-kDa protein (p62) that binds to the Src homology 2 (SH2) domain of p56lck in a phosphotyrosine-independent manner has been cloned. The cDNA is composed of 2074 nucleotides with an open reading frame encoding 440 amino acids. Northern analysis suggests that p62 is expressed ubiquitously in all tissues examined. p62 is not homologous to any known protein in the data base. However, it contains a cysteine-rich region resembling a zinc finger motif, a potential G-protein-binding region, a PEST motif, and several potential phosphorylation sites. Using T7-epitope tagged p62 expression in HeLa cells, the expressed protein was shown to bind to the lck SH2 domain. Deletion of the N-terminal 50 amino acids abolished binding, but mutagenesis of the single tyrosine residue in this region had no effect on binding. Thus, the cloned cDNA indeed encodes the p62 protein, which is a phosphotyrosine-independent ligand for the lck SH2 domain. Its binding mechanism is unique with respect to binding modes of other known ligands for SH2 domains.
Resumo:
The lack of efficient mechanisms for stable genetic transformation of medically important insects, such as anopheline mosquitoes, is the single most important impediment to progress in identifying novel control strategies. Currently available techniques for foreign gene expression in insect cells in culture lack the benefit of stable inheritance conferred by integration. To overcome this problem, a new class of pantropic retroviral vectors has been developed in which the amphotropic envelope is completely replaced by the G glycoprotein of vesicular stomatitis virus. The broadened host cell range of these particles allowed successful entry, integration, and expression of heterologous genes in cultured cells of Anopheles gambiae, the principle mosquito vector responsible for the transmission of over 100 million cases of malaria each year. Mosquito cells in culture infected with a pantropic vector expressing hygromycin phosphotransferase from the Drosophila hsp70 promoter were resistant to the antibiotic hygromycin B. Integrated provirus was detected in infected mosquito cell clones grown in selective media. Thus, pantropic retroviral vectors hold promise as a transformation system for mosquitoes in vivo.
Resumo:
5'-Deoxy-5'-methylthioadenosine phosphorylase (methylthioadeno-sine: ortho-phosphate methylthioribosyltransferase, EC 24.2.28; MTAP) plays a role in purine and polyamine metabolism and in the regulation of transmethylation reactions. MTAP is abundant in normal cells but is deficient in many cancers. Recently, the genes for the cyclin-dependent kinase inhibitors p16 and p15 have been localized to the short arm of human chromosome 9 at band p21, where MTAP and interferon alpha genes (IFNA) also map. Homozygous deletions of p16 and p15 are frequent malignant cell lines. However, the order of the MTAP, p16, p15, and IFNA genes on chromosome 9p is uncertain, and the molecular basis for MTAP deficiency in cancer is unknown. We have cloned the MTAP gene, and have constructed a topologic map of the 9p21 region using yeast artificial chromosome clones, pulse-field gel electrophoresis, and sequence-tagged-site PCR. The MTAP gene consists of eight exons and seven introns. Of 23 malignant cell lines deficient in MTAP protein, all but one had complete or partial deletions. Partial or total deletions of the MTAP gene were found in primary T-cell acute lymphoblastic leukemias (T-ALL). A deletion breakpoint of partial deletions found in cell lines and primary T-ALL was in intron 4. Starting from the centromeric end, the gene order on chromosome 9p2l is p15, p16, MTAP, IFNA, and interferon beta gene (IFNB). These results indicate that MTAP deficiency in cancer is primarily due to codeletion of the MTAP and p16 genes.