935 resultados para Clonal Propagation
Resumo:
Decentralised supply chain formation involves determining the set of producers within a network able to supply goods to one or more consumers at the lowest cost. This problem is frequently tackled using auctions and negotiations. In this paper we show how it can be cast as an optimisation of a pairwise cost function. Optimising this class of functions is NP-hard but good approximations to the global minimum can be obtained using Loopy Belief Propagation (LBP). Here we detail a LBP-based approach to the supply chain formation problem, involving decentralised message-passing between potential participants. Our approach is evaluated against a well-known double-auction method and an optimal centralised technique, showing several improvements: it obtains better solutions for most networks that admit a competitive equilibrium Competitive equilibrium as defined in [3] is used as a means of classifying results on certain networks to allow for minor inefficiencies in their auction protocol and agent bidding strategies. while also solving problems where no competitive equilibrium exists, for which the double-auction method frequently produces inefficient solutions.
Resumo:
We investigate a digital back-propagation simplification method to enable computationally-efficient digital nonlinearity compensation for a coherently-detected 112 Gb/s polarization multiplexed quadrature phase shifted keying transmission over a 1,600 km link (20x80km) with no inline compensation. Through numerical simulation, we report up to 80% reduction in required back-propagation steps to perform nonlinear compensation, in comparison to the standard back-propagation algorithm. This method takes into account the correlation between adjacent symbols at a given instant using a weighted-average approach, and optimization of the position of nonlinear compensator stage to enable practical digital back-propagation.
Resumo:
We report the impact of longitudinal signal power profile on the transmission performance of coherently-detected 112 Gb/s m-ary polarization multiplexed quadrature amplitude modulation system after compensation of deterministic nonlinear fibre impairments. Performance improvements up to 0.6 dB (Q(eff)) are reported for a non-uniform transmission link power profile. Further investigation reveals that the evolution of the transmission performance with power profile management is fully consistent with the parametric amplification of the amplified spontaneous emission by the signal through four-wave mixing. In particular, for a non-dispersion managed system, a single-step increment of 4 dB in the amplifier gain, with respect to a uniform gain profile, at similar to 2/3(rd) of the total reach considerably improves the transmission performance for all the formats studied. In contrary a negative-step profile, emulating a failure (gain decrease or loss increase), significantly degrades the bit-error rate.
Resumo:
We experimentally demonstrate performance enhancements enabled by weighted digital back propagation method for 28 Gbaud PM-16QAM transmission systems, over a 250 km ultra-large area fibre, using only one back-propagation step for the entire link, enabling up to 3 dB improvement in power tolerance with respect to linear compensation only. We observe that this is roughly the same improvement that can be obtained with the conventional, computationally heavy, non-weighted digital back propagation compensation with one step per span. As a further benchmark, we analyze performance improvement as a function of number of steps, and show that the performance improvement saturates at approximately 20 steps per span, at which a 5 dB improvement in power tolerance is obtained with respect to linear compensation only. Furthermore, we show that coarse-step self-phase modulation compensation is inefficient in wavelength division multiplexed transmission.
Resumo:
Limitations in the performance of coherent transmission systems employing digital back-propagation due to four-wave mixing impairments are reported for the first time. A significant performance constraint is identified, originating from four-wave mixing between signals and amplified spontaneous emission noise which induces a linear increase in the standard deviation of the received field with signal power, and linear dependence on transmission distance.
Resumo:
We report the performance of coherently-detected nine-channel WDM transmission over high dispersion fibers, using polarization multiplexed m-ary quadrature amplitude modulation (m = 4, 16, 64, 256) at 112 Gbit/s. Compensation of fiber nonlinearities via digital back-propagation enables up to 10 dB improvement in maximum transmittable power and similar to 8 dB Q(eff) improvement which translates to a nine-fold enhancement in transmission reach for PM-256QAM, where the largest improvements are associated with higher-order modulation formats. We further demonstrate that even under strong nonlinear distortion the transmission reach only reduces by a factor of similar to 2.5 for a 2 unit increase in capacity (log(2)m) when full band DBP is employed, in proportion to the required back-to-back OSNR.
Resumo:
We experimentally demonstrate adiabatic soliton propagation in the fundamental mode of a few mode optical fibre and more complex behaviour in a higher order mode, indicating that the impact of nonlinearities differs for each mode.
Resumo:
A theoretical model is developed to describe the propagation of ultrashort optical pulses in fiber transmission systems in the quasilinear regime, with periodically inserted in-line nonlinear optical devices.
Resumo:
A theoretical model is developed to describe the propagation of ultra-short optical pulses in fiber transmission systems in the quasi-linear regime, with periodically inserted in-line lumped nonlinear optical devices. Stable autosoliton solutions are obtained for a particular application of the general theory.
Resumo:
The focus of this study is development of parallelised version of severely sequential and iterative numerical algorithms based on multi-threaded parallel platform such as a graphics processing unit. This requires design and development of a platform-specific numerical solution that can benefit from the parallel capabilities of the chosen platform. Graphics processing unit was chosen as a parallel platform for design and development of a numerical solution for a specific physical model in non-linear optics. This problem appears in describing ultra-short pulse propagation in bulk transparent media that has recently been subject to several theoretical and numerical studies. The mathematical model describing this phenomenon is a challenging and complex problem and its numerical modeling limited on current modern workstations. Numerical modeling of this problem requires a parallelisation of an essentially serial algorithms and elimination of numerical bottlenecks. The main challenge to overcome is parallelisation of the globally non-local mathematical model. This thesis presents a numerical solution for elimination of numerical bottleneck associated with the non-local nature of the mathematical model. The accuracy and performance of the parallel code is identified by back-to-back testing with a similar serial version.
Resumo:
Direct quantile regression involves estimating a given quantile of a response variable as a function of input variables. We present a new framework for direct quantile regression where a Gaussian process model is learned, minimising the expected tilted loss function. The integration required in learning is not analytically tractable so to speed up the learning we employ the Expectation Propagation algorithm. We describe how this work relates to other quantile regression methods and apply the method on both synthetic and real data sets. The method is shown to be competitive with state of the art methods whilst allowing for the leverage of the full Gaussian process probabilistic framework.
Resumo:
Supply chain formation is the process by which a set of producers within a network determine the subset of these producers able to form a chain to supply goods to one or more consumers at the lowest cost. This problem has been tackled in a number of ways, including auctions, negotiations, and argumentation-based approaches. In this paper we show how this problem can be cast as an optimization of a pairwise cost function. Optimizing this class of energy functions is NP-hard but efficient approximations to the global minimum can be obtained using loopy belief propagation (LBP). Here we detail a max-sum LBP-based approach to the supply chain formation problem, involving decentralized message-passing between supply chain participants. Our approach is evaluated against a well-known decentralized double-auction method and an optimal centralized technique, showing several improvements on the auction method: it obtains better solutions for most network instances which allow for competitive equilibrium (Competitive equilibrium in Walsh and Wellman is a set of producer costs which permits a Pareto optimal state in which agents in the allocation receive non-negative surplus and agents not in the allocation would acquire non-positive surplus by participating in the supply chain) while also optimally solving problems where no competitive equilibrium exists, for which the double-auction method frequently produces inefficient solutions. © 2012 Wiley Periodicals, Inc.
Resumo:
Aim: Delayed graft revascularization impedes the success of human islet transplantation. This study utilized rotational co-culture of insulin secreting ß-cells with human umbilical vein endothelial cells (HUVECs) and a peroxisome proliferator-activated receptor gamma (PPAR-?) agonist to promote insulin and vascular endothelial growth factor (VEGF) secretory function. Methods: Clonal BRIN-BD11 (D11) cells were maintained in static culture (SC) and rotational culture (RC) ± HUVEC and ± the TZD (thiazolidinedione) rosiglitazone (10 mmol/l) as a specific PPAR-? agonist. HUVECs were cultured in SC and RC ± D11 and ± TZD. D11 insulin secretion was induced by static incubation with low glucose (1.67 mmol/l), high glucose (16.7 mmol/l) and high glucose with 10 mmol/l theophylline (G+T) and assessed by enzyme-linked immunosorbent assay (ELISA). HUVEC proliferation was determined by ATP luminescence, whereas VEGF secretion was quantified by ELISA. Co-cultured cells were characterized by immunostaining for insulin and CD31. Results: D11 SC and RC showed enhanced insulin secretion in response to 16.7 mmol/l and G+T (p <0.01); without significant alteration by the TZD. Co-culture with HUVEC in SC and RC also increased D11 insulin secretion when challenged with 16.7 mmol/l and G+T (p <0.01), and this was slightly enhanced by the TZD. The presence of HUVEC increased D11 SC and RC insulin secretion in response to high glucose and G+T, respectively (p <0.01). Addition of the TZD increased SC and RC HUVEC ATP content (p <0.01) and VEGF production (p <0.01) in the presence and absence of D11 cells. Conclusions: Rotational co-culture of insulin secreting cells with endothelial cells, and exposure to a PPAR-? agonist may improve the prospects for graft revascularization and function after implantation. © 2011 Blackwell Publishing Ltd.
Resumo:
Thiazolidinediones (TZDs) are used as antidiabetic therapy. The purpose of the present study was to examine whether the TZD rosiglitazone has direct actions on pancreatic beta-cells that contribute to its overall effects. Effects of acute and prolonged (48 h) exposure to rosiglitazone, as a model glitazone compound, were assessed in clonal pancreatic BRIN-BD11 beta-cells maintained in standard, glucotoxic and lipotoxic cultures. In acute 20-min incubations, rosiglitazone (0.2-100 M) did not alter basal or glucose-stimulated insulin secretion. However, rosiglitazone (6.25 M) enhanced (p