946 resultados para Clique irreducible graphs
Resumo:
A 3-year longitudinal study Transforming Children’s Mathematical and Scientific Development integrates, through data modelling, a pedagogical approach focused on mathematical patterns and structural relationships with learning in science. As part of this study, a purposive sample of 21 highly able Grade 1 students was engaged in an innovative data modelling program. In the majority of students, representational development was observed. Their complex graphs depicting categorical and continuous data revealed a high level of structure and enabled identification of structural features critical to this development.
Resumo:
This chapter argues for the need to restructure children’s statistical experiences from the beginning years of formal schooling. The ability to understand and apply statistical reasoning is paramount across all walks of life, as seen in the variety of graphs, tables, diagrams, and other data representations requiring interpretation. Young children are immersed in our data-driven society, with early access to computer technology and daily exposure to the mass media. With the rate of data proliferation have come increased calls for advancing children’s statistical reasoning abilities, commencing with the earliest years of schooling (e.g., Langrall et al. 2008; Lehrer and Schauble 2005; Shaughnessy 2010; Whitin and Whitin 2011). Several articles (e.g., Franklin and Garfield 2006; Langrall et al. 2008) and policy documents (e.g., National Council of Teachers ofMathematics 2006) have highlighted the need for a renewed focus on this component of early mathematics learning, with children working mathematically and scientifically in dealing with realworld data. One approach to this component in the beginning school years is through data modelling (English 2010; Lehrer and Romberg 1996; Lehrer and Schauble 2000, 2007)...
Resumo:
The Pink Women's Wellness Program Journal is a Queensland University of Technology (School of Nursing and Midwifery) initiative supported by IHBI, The Kim Walters Choices Program, Cancer Council Queensland and HOCA. The 12-week program provides participants recovering from acute breast cancer treatment a comprehensive set of information and tools designed to help get their lives back on track. Through the adoption of positive lifestyle habits, the focus of the program is the management of key side effects such as menopausal symptoms, increased risk of osteoporosis, heart disease and type 2 diabetes. This website brings a successful pilot program to an online medium, offering participants many advantages over the existing print journal. Some of the key services offered by the website version are: - Easy to use data capture tools to track exercise, BMI, nutrition and menopausal symptoms. - Real-time graphs illustrating participants' progress day by day and week by week. - The opportunity for participants to interact through simple social media tools. - Program related reminders, notifications and motivational messages.
Resumo:
In the expanding literature on creative practice research, art and design are often described as a unified field. They are bracketed together (art-and-design), referred to as interchangeable terms (art/design), and nested together, as if the practices of one domain encompass the other. However it is possible to establish substantial differences in research approaches. In this chapter we argue that core distinctions arise out of the goals of the research, intentions invested in the resulting “artefacts” (creative works, products, events), and the knowledge claims made for the research outcomes. Moreover, these fundamental differences give rise to a number of contingent attributes of the research such as the forming contexts, methodological approaches, and ways of evidencing and reporting new knowledge. We do not strictly ascribe these differences to disciplinary contexts. Rather, we use the terms effective practice research and evocative practice research to describe the spirit of the two distinctive research paradigms we identify. In short, effective practice research (often pursued in design fields) seeks a solution (or resolution) to a problem identified with a particular community, and it produces an artefact that addresses this problem by effecting change (making a situation, product or process more efficient or effective in some way). On the other hand, evocative practice research (often pursued by creative arts fields) is driven by individual pre-occupations, cultural concerns or human experience more broadly. It produces artefacts that evoke affect and resonance, and are poetically irreducible in meaning. We cite recent examples of creative research projects that illustrate the distinctions we identify. We then go on to describe projects that integrate these modes of research. In this way, we map out a creative research spectrum, with distinct poles as well as multiple hybrid possibilities. The hybrid projects we reference are not presented as evidence an undifferentiated field. Instead, we argue that they integrate research modes in deliberate, purposeful and distinctive ways: employing effective practice research methods in the production of evocative artefacts or harnessing evocative (as well as effective) research paradigms to effect change.
Resumo:
Interdisciplinary research is often funded by national government initiatives or large corporate sponsorship, and as such, demands periodic reporting on the use of those funds. For reasons of accountability, governance and communication to the tax payer, knowledge of the outcomes of the research need to be measured and understood. The interdisciplinary approach to research raises many challenges for impact reporting. This presentation will consider what are the best practice workflow models and methodologies.Novel methodologies that can be added to the usual metrics of academic publications include analysis of percentage share of total publications in a subject or keyword field, calculating most cited publication in a key phrase category, analysis of who has cited or reviewed the work, and benchmarking of this data against others in that same category. At QUT, interest in how collaborative networking is trending in a research theme has led to the creation of some useful co-authorship graphs that demonstrate the network positions of authors and the strength of their scientific collaborations within a group. The scale of international collaborations is also worth including in the assessment. However, despite all of the tools and techniques available, the most useful way a researcher can help themselves and the process is to set up and maintain their researcher identifier and profile.
Resumo:
Whole image descriptors have recently been shown to be remarkably robust to perceptual change especially compared to local features. However, whole-image-based localization systems typically rely on heuristic methods for determining appropriate matching thresholds in a particular environment. These environment-specific tuning requirements and the lack of a meaningful interpretation of these arbitrary thresholds limits the general applicability of these systems. In this paper we present a Bayesian model of probability for whole-image descriptors that can be seamlessly integrated into localization systems designed for probabilistic visual input. We demonstrate this method using CAT-Graph, an appearance-based visual localization system originally designed for a FAB-MAP-style probabilistic input. We show that using whole-image descriptors as visual input extends CAT-Graph’s functionality to environments that experience a greater amount of perceptual change. We also present a method of estimating whole-image probability models in an online manner, removing the need for a prior training phase. We show that this online, automated training method can perform comparably to pre-trained, manually tuned local descriptor methods.
Resumo:
Twitter is the focus of much research attention, both in traditional academic circles and in commercial market and media research, as analytics give increasing insight into the performance of the platform in areas as diverse as political communication, crisis management, television audiencing and other industries. While methods for tracking Twitter keywords and hashtags have developed apace and are well documented, the make-up of the Twitter user base and its evolution over time have been less understood to date. Recent research efforts have taken advantage of functionality provided by Twitter's Application Programming Interface to develop methodologies to extract information that allows us to understand the growth of Twitter, its geographic spread and the processes by which particular Twitter users have attracted followers. From politicians to sporting teams, and from YouTube personalities to reality television stars, this technique enables us to gain an understanding of what prompts users to follow others on Twitter. This article outlines how we came upon this approach, describes the method we adopted to produce accession graphs and discusses their use in Twitter research. It also addresses the wider ethical implications of social network analytics, particularly in the context of a detailed study of the Twitter user base.
Resumo:
This paper addresses the problem of computing the aggregate QoS of a composite service given the QoS of the services participating in the composition. Previous solutions to this problem are restricted to composite services with well-structured orchestration models. Yet, in existing languages such as WS-BPEL and BPMN, orchestration models may be unstructured. This paper lifts this limitation by providing equations to compute the aggregate QoS for general types of irreducible unstructured regions in orchestration models. In conjunction with existing algorithms for decomposing business process models into single-entry-single-exit regions, these functions allow us to cover a larger set of orchestration models than existing QoS aggregation techniques.
Resumo:
Software engineers constantly deal with problems of designing, analyzing, and improving process specifications, e.g., source code, service compositions, or process models. Process specifications are abstractions of behavior observed or intended to be implemented in reality which result from creative engineering practice. Usually, process specifications are formalized as directed graphs in which edges capture temporal relations between decisions, synchronization points, and work activities. Every process specification is a compromise between two points: On the one hand engineers strive to operate with less modeling constructs which conceal irrelevant details, while on the other hand the details are required to achieve the desired level of customization for envisioned process scenarios. In our research, we approach the problem of varying abstraction levels of process specifications. Formally, developed abstraction mechanisms exploit the structure of a process specification and allow the generalization of low-level details into concepts of a higher abstraction level. The reverse procedure can be addressed as process specialization.
Resumo:
Process models define allowed process execution scenarios. The models are usually depicted as directed graphs, with gateway nodes regulating the control flow routing logic and with edges specifying the execution order constraints between tasks. While arbitrarily structured control flow patterns in process models complicate model analysis, they also permit creativity and full expressiveness when capturing non-trivial process scenarios. This paper gives a classification of arbitrarily structured process models based on the hierarchical process model decomposition technique. We identify a structural class of models consisting of block structured patterns which, when combined, define complex execution scenarios spanning across the individual patterns. We show that complex behavior can be localized by examining structural relations of loops in hidden unstructured regions of control flow. The correctness of the behavior of process models within these regions can be validated in linear time. These observations allow us to suggest techniques for transforming hidden unstructured regions into block-structured ones.
Resumo:
A business process is often modeled using some kind of a directed flow graph, which we call a workflow graph. The Refined Process Structure Tree (RPST) is a technique for workflow graph parsing, i.e., for discovering the structure of a workflow graph, which has various applications. In this paper, we provide two improvements to the RPST. First, we propose an alternative way to compute the RPST that is simpler than the one developed originally. In particular, the computation reduces to constructing the tree of the triconnected components of a workflow graph in the special case when every node has at most one incoming or at most one outgoing edge. Such graphs occur frequently in applications. Secondly, we extend the applicability of the RPST. Originally, the RPST was applicable only to graphs with a single source and single sink such that the completed version of the graph is biconnected. We lift both restrictions. Therefore, the RPST is then applicable to arbitrary directed graphs such that every node is on a path from some source to some sink. This includes graphs with multiple sources and/or sinks and disconnected graphs.
Resumo:
Behavioral models capture operational principles of real-world or designed systems. Formally, each behavioral model defines the state space of a system, i.e., its states and the principles of state transitions. Such a model is the basis for analysis of the system’s properties. In practice, state spaces of systems are immense, which results in huge computational complexity for their analysis. Behavioral models are typically described as executable graphs, whose execution semantics encodes a state space. The structure theory of behavioral models studies the relations between the structure of a model and the properties of its state space. In this article, we use the connectivity property of graphs to achieve an efficient and extensive discovery of the compositional structure of behavioral models; behavioral models get stepwise decomposed into components with clear structural characteristics and inter-component relations. At each decomposition step, the discovered compositional structure of a model is used for reasoning on properties of the whole state space of the system. The approach is exemplified by means of a concrete behavioral model and verification criterion. That is, we analyze workflow nets, a well-established tool for modeling behavior of distributed systems, with respect to the soundness property, a basic correctness property of workflow nets. Stepwise verification allows the detection of violations of the soundness property by inspecting small portions of a model, thereby considerably reducing the amount of work to be done to perform soundness checks. Besides formal results, we also report on findings from applying our approach to an industry model collection.
Resumo:
Service science combines scientific, management, and engineering disciplines to improve the understanding of how service systems cooperate to create business value. Service systems are complex configurations of people, technologies, and resources that coexist in a common environment of service provisioning. While the general concepts of service science are understood and agreed upon, the representation of service systems using models is still in its infancy. In this chapter, we look at business processes and their role in properly representing service systems. We propose flexible process graphs, a high-level process modeling language, and extend it in order to specify service systems and their compositions within shared environments in a flexible way. The discussion in this chapter is the first step towards a formal description of service science environment, including service systems, networks, and whole ecology.
Resumo:
Process models are usually depicted as directed graphs, with nodes representing activities and directed edges control flow. While structured processes with pre-defined control flow have been studied in detail, flexible processes including ad-hoc activities need further investigation. This paper presents flexible process graph, a novel approach to model processes in the context of dynamic environment and adaptive process participants’ behavior. The approach allows defining execution constraints, which are more restrictive than traditional ad-hoc processes and less restrictive than traditional control flow, thereby balancing structured control flow with unstructured ad-hoc activities. Flexible process graph focuses on what can be done to perform a process. Process participants’ routing decisions are based on the current process state. As a formal grounding, the approach uses hypergraphs, where each edge can associate any number of nodes. Hypergraphs are used to define execution semantics of processes formally. We provide a process scenario to motivate and illustrate the approach.
Resumo:
Businesses document their operational processes as process models. The common practice is to represent process models as directed graphs. The nodes of a process graph represent activities and directed edges constitute activity ordering constraints. A flexible process graph modeling approach proposes to generalize process graph structure to a hypergraph. Obtained process structure aims at formalization of ad-hoc process control flow. In this paper we discuss aspects relevant to concurrent execution of process activities in a collaborative manner organized as a flexible process graph. We provide a real world flexible process scenario to illustrate the approach.