965 resultados para Classical orthogonal polynomials
Resumo:
An extremal problem for the coefficients of sine polynomials, which are nonnegative in [0,π] , posed and discussed by Rogosinski and Szego is under consideration. An analog of the Fejér-Riesz representation of nonnegative general trigonometric and cosine polynomials is proved for nonnegative sine polynomials. Various extremal sine polynomials for the problem of Rogosinski and Szego are obtained explicitly. Associated cosine polynomials k n (θ) are constructed in such a way that { k n (θ) } are summability kernels. Thus, the L p , pointwise and almost everywhere convergence of the corresponding convolutions, is established. © 2002 Springer-Verlag New York Inc.
Resumo:
It is proven that the classical pure spinor superstring in an AdS 5 × S5 back-ground has a flat current depending on a continuous parameter. This generalizes the recent result of Bena, et al. for the classical Green-Schwarz superstring. © SISSA/ISAS 2004.
Resumo:
In this work we present a mapping between the classical solutions of the sine-Gordon, Liouville, λφ4 and other kinks in 1+1 dimensions. This is done by using an invariant quantity which relates the models. It is easily shown that this procedure is equivalent to that used to get the so called deformed solitons, as proposed recently by Bazeia et al. [Phys. Rev. D. 66 (2002) 101701(R)]. The classical equivalence is explored in order to relate the solutions of the corresponding models and, as a consequence, try to get new information about them. We discuss also the difficulties and consequences which appear when one tries to extend the deformation in order to take into account the quantum version of the models.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
As far as external gravitational fields described by Newton's theory are concerned, theory shows that there is an unavoidable conflict between the universality of free fall (Galileo's equivalence principle) and quantum mechanics - a result confirmed by experiment. Is this conflict due perhaps to the use of Newton's gravity, instead of general relativity, in the analysis of the external gravitational field? The response is negative. To show this we compute the low corrections to the cross-section for the scattering of different quantum particles by an external gravitational field, treated as an external field, in the framework of Einstein's linearized gravity. To first order the cross-sections are spin-dependent; if the calculations are pushed to the next order they become dependent upon energy as well. Therefore, the Galileo's equivalence and, consequently, the classical equivalence principle, is violated in both cases. We address these issues here.
Resumo:
This study compared the color fidelity of different composite resins with their registration in the Vita Classical Shade Guide. Using a prefabricated Teflon mold, 120 specimens were divided into four groups fn - 30), according to the resin tested. Three subgroups (a = 10) were prepared for each resin group; these subgroups tested enamel shade, dentin shade, and enamel and dentin shade. Three measurements were performed to verily whether the tooth shade matched that of the Vita Classical Shade Guide. The color was evaluated and the shade variations were calculated. The data were submitted to a three-way AN OVA test (time, color match, and composite type), followed by Tukey's test. It was concluded that all composite resins showed color differences in relation to the Vita Classical Shade Guide.
Resumo:
The cost of maintenance makes up a large part of total energy costs in ruminants. Metabolizable energy (ME) requirement for maintenance (MEm) is the daily ME intake that exactly balances heat energy (HE). The net energy requirement for maintenance (NEm) is estimated subtracting MEm from the HE produced by the processing of the diet. Men cannot be directly measured experimentally and is estimated by measuring basal metabolism in fasted animals or by regression measuring the recovered energy in fed animals. MEm and NEm usually, but not always, are expressed in terms of BW0.75. However, this scaling factor is substantially empirical and its exponent is often inadequate, especially for growing animals. MEm estimated by different feeding systems (AFRC, CNCPS, CSIRO, INRA, NRC) were compared by using dairy cattle data. The comparison showed that these systems differ in the approaches used to estimate MEm and for its quantification. The CSIRO system estimated the highest MEm, mostly because it includes a correction factor to increase ME as the feeding level increases. Relative to CSIRO estimates, those of NRC, INRA, CNCPS, and AFRC were on average 0.92, 0.86, 0.84, and 0.78, respectively. MEm is affected by the previous nutritional history of the animals. This phenomenon is best predicted by dynamic models, of which several have been published in the last decades. They are based either on energy flows or on nutrient flows. Some of the different approaches used were described and discussed.
Resumo:
Smith-Magenis syndrome (SMS) is a complex disorder whose clinical features include mild to severe intellectual disability with speech delay, growth failure, brachycephaly, flat midface, short broad hands, and behavioral problems. SMS is typically caused by a large deletion on 17p11.2 that encompasses multiple genes including the retinoic acid induced 1, RAI1, gene or a mutation in the RAI1 gene. Here we have evaluated 30 patients with suspected SMS and identified SMS-associated classical 17p11.2 deletions in six patients, an atypical deletion of ∼139 kb that partially deletes the RAI1 gene in one patient, and RAI1 gene nonsynonymous alterations of unknown significance in two unrelated patients. The RAI1 mutant proteins showed no significant alterations in molecular weight, subcellular localization and transcriptional activity. Clinical features of patients with or without 17p11.2 deletions and mutations involving the RAI1 gene were compared to identify phenotypes that may be useful in diagnosing patients with SMS. © 2012 Macmillan Publishers Limited All rights reserved.
Resumo:
The dissociation dynamics of heteronuclear diatomic molecules induced by infrared laser pulses is investigated within the framework of the classical driven Morse oscillator. The interaction between the molecule and the laser field described in the dipole formulation is given by the product of a time-dependent external field with a position-dependent permanent dipole function. The effects of changing the spatial range of the dipole function in the classical dissociation dynamics of large ensembles of trajectories are studied. Numerical calculations have been performed for distinct amplitudes and carrier frequencies of the external pulses and also for ensembles with different initial energies. It is found that there exist a set of values of the dipole range for which the dissociation probability can be completely suppressed. The dependence of the dissociation on the dipole range is explained through the examination of the Fourier series coefficients of the dipole function in the angle variable of the free system. In particular, the suppression of dissociation corresponds to dipole ranges for which the Fourier coefficients associated with nonlinear resonances are null and the chaotic region in the phase space is reduced to thin layers. In this context, it is shown that the suppression of dissociation of heteronuclear molecules for certain frequencies of the external field is a consequence of the finite range of the corresponding permanent dipole. © 2013 American Physical Society.
Resumo:
Constrained intervals, intervals as a mapping from [0, 1] to polynomials of degree one (linear functions) with non-negative slopes, and arithmetic on constrained intervals generate a space that turns out to be a cancellative abelian monoid albeit with a richer set of properties than the usual (standard) space of interval arithmetic. This means that not only do we have the classical embedding as developed by H. Radström, S. Markov, and the extension of E. Kaucher but the properties of these polynomials. We study the geometry of the embedding of intervals into a quasilinear space and some of the properties of the mapping of constrained intervals into a space of polynomials. It is assumed that the reader is familiar with the basic notions of interval arithmetic and interval analysis. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Some dynamical properties for a bouncing ball model are studied. We show that when dissipation is introduced the structure of the phase space is changed and attractors appear. Increasing the amount of dissipation, the edges of the basins of attraction of an attracting fixed point touch the chaotic attractor. Consequently the chaotic attractor and its basin of attraction are destroyed given place to a transient described by a power law with exponent -2. The parameter-space is also studied and we show that it presents a rich structure with infinite self-similar structures of shrimp-shape. © 2013 Elsevier B.V. All rights reserved.
Resumo:
We investigate how special relativity influences the transmission of classical information through quantum channels by evaluating the Holevo bound when the sender and the receiver are in (relativistic) relative motion. By using the spin degrees of freedom of spin-1/2 fermions to encode the classical information, we show that, for some configurations, the accessible information in the receiver can be increased when the spin detector moves fast enough. This is possible by allowing the momentum wave packet of one of the particles to be sufficiently wide while the momentum wave packets of other particles are kept relatively narrow. In this way, one can take advantage of the fact that boosts entangle the spin and momentum degrees of freedom of spin-1/2 fermions to increase the accessible information in the former. We close the paper with a discussion of how this relativistic quantum channel cannot in general be described by completely positive quantum maps. © 2013 American Physical Society.
Resumo:
We explore the idea that chaos concepts might be useful for understanding the thermalization in gauge theories. The SU(2) Higgs model is discussed as a prototype of system with gauge fields coupled to matter fields. Through the numerical solution of the equations of motion, we are able to characterize chaotic behavior via the corresponding Lyapunov exponent. Then it is demonstrated that the system's approach to equilibrium can be understood through direct application of the principles of Statistical Mechanics. © 2013 AIP Publishing LLC.
Resumo:
Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. © 2013 American Dairy Science Association.