993 resultados para Cladding band structure
Resumo:
In the present work we report the details of the preparation and characterization results of Cu2ZnSnS4 (CZTS) based solar cells. The CZTS absorber was obtained by sulphurization of dc magnetron sputtered Zn/Sn/Cu precursor layers. The morphology, composition and structure of the absorber layer were studied by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering. The majority carrier type was identified via a hot point probe analysis. The hole density, space charge region width and band gap energy were estimated from the external quantum efficiency measurements. A MoS2 layer that formed during the sulphurization process was also identified and analyzed in this work. The solar cells had the following structure: soda lime glass/Mo/CZTS/CdS/i-ZnO/ZnO:Al/Al grid. The best solar cell showed an opencircuit voltage of 345 mV, a short-circuit current density of 4.42 mA/cm2, a fill factor of 44.29% and an efficiency of 0.68% under illumination in simulated standard test conditions: AM 1.5 and 100 mW/cm2.
Resumo:
Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) with their band gap energies around 1.45 eV and 1.0 eV, respectively, can be used as the absorber layer in thin film solar cells. By using a mixture of both compounds, Cu2ZnSn(S,Se)4 (CZTSSe), a band gap tuning may be possible. The latter material has already shown promising results such as solar cell efficiencies up to 10.1%. In this work, CZTSSe thin films were grown in order to study its structure and to establish the best growth precursors. SEM micrographs reveal an open columnar structure for most samples and EDS composition profiling of the cross sections show different selenium gradients. X-ray diffractograms show different shifts of the kesterite/stannite (1 1 2) peak, which indicate the presence of CZTSSe. From Raman scattering analysis, it was concluded that all samples had traces of CZTS and CZTSSe. The composition of the CZTSSe layer was estimated using X-ray diffraction and Raman scattering and both results were compared. It was concluded that Se diffused more easily in precursors with ternary Cu–Sn–S phases and metallic Zn than in precursors with ZnS and/or CZTS already formed. It was also showed that a combination of X-ray diffraction and Raman scattering can be used to estimate the ratio of S per Se in CZTSSe samples.
Resumo:
Hydroxycinnamic acids (HCAs) are important phytochemicals possessing significant biological properties. Several investigators have studied in vitro antioxidant activity of HCAs in detail. In this review, we have gathered the studies focused on the structure-activity relationships (SARs) of these compounds that have used medicinal chemistry to generate more potent antioxidant molecules. Most of the reports indicated that the presence of an unsaturated bond on the side chain of HCAs is vital to their activity. The structural features that were reported to be of importance to the antioxidant activity were categorized as follows: modifications of the aromatic ring, which include alterations in the number and position of hydroxy groups and insertion of electron donating or withdrawing moieties as well as modifications of the carboxylic function that include esterification and amidation process. Furthermore, reports that have addressed the influence of physicochemical properties including redox potential, lipid solubility and dissociation constant on the antioxidant activity were also summarized. Finally, the pro-oxidant effect of HCAs in some test systems was addressed. Most of the investigations concluded that the presence of ortho-dihydroxy phenyl group (catechol moiety) is of significant importance to the antioxidant activity, while, the presence of three hydroxy groups does not necessarily improve the activity. Optimization of the structure of molecular leads is an important task of modern medicinal chemistry and its accomplishment relies on the careful assessment of SARs. SAR studies on HCAs can identify the most successful antioxidants that could be useful for management of oxidative stress-related diseases.
Resumo:
This synopsis summarizes the key chemical and bacteriological characteristics of β-lactams, penicillins, cephalosporins, carbanpenems, monobactams and others. Particular notice is given to first-generation to fifth-generation cephalosporins. This reviewalso summarizes the main resistancemechanism to antibiotics, focusing particular attention to those conferring resistance to broad-spectrum cephalosporins by means of production of emerging cephalosporinases (extended-spectrum β-lactamases and AmpC β-lactamases), target alteration (penicillin-binding proteins from methicillin-resistant Staphylococcus aureus) and membrane transporters that pump β-lactams out of the bacterial cell.
Resumo:
The principal topic of this work is the application of data mining techniques, in particular of machine learning, to the discovery of knowledge in a protein database. In the first chapter a general background is presented. Namely, in section 1.1 we overview the methodology of a Data Mining project and its main algorithms. In section 1.2 an introduction to the proteins and its supporting file formats is outlined. This chapter is concluded with section 1.3 which defines that main problem we pretend to address with this work: determine if an amino acid is exposed or buried in a protein, in a discrete way (i.e.: not continuous), for five exposition levels: 2%, 10%, 20%, 25% and 30%. In the second chapter, following closely the CRISP-DM methodology, whole the process of construction the database that supported this work is presented. Namely, it is described the process of loading data from the Protein Data Bank, DSSP and SCOP. Then an initial data exploration is performed and a simple prediction model (baseline) of the relative solvent accessibility of an amino acid is introduced. It is also introduced the Data Mining Table Creator, a program developed to produce the data mining tables required for this problem. In the third chapter the results obtained are analyzed with statistical significance tests. Initially the several used classifiers (Neural Networks, C5.0, CART and Chaid) are compared and it is concluded that C5.0 is the most suitable for the problem at stake. It is also compared the influence of parameters like the amino acid information level, the amino acid window size and the SCOP class type in the accuracy of the predictive models. The fourth chapter starts with a brief revision of the literature about amino acid relative solvent accessibility. Then, we overview the main results achieved and finally discuss about possible future work. The fifth and last chapter consists of appendices. Appendix A has the schema of the database that supported this thesis. Appendix B has a set of tables with additional information. Appendix C describes the software provided in the DVD accompanying this thesis that allows the reconstruction of the present work.
Resumo:
This paper studies fractional variable structure controllers. Two cases are considered namely, the sliding reference model and the control action, that are generalized from integer into fractional orders. The test bed consists in a mechanical manipulator and the effect of the fractional approach upon the system performance is evaluated. The results show that fractional dynamics, both in the switching surface and the control law are important design algorithms in variable structure controllers.
Resumo:
In this cross-sectional study we analyzed, whether team climate for innovation mediates the relationship between team task structure and innovative behavior, job satisfaction, affective organizational commitment, and work stress. 310 employees in 20 work teams of an automotive company participated in this study. 10 teams had been changed from a restrictive to a more self-regulating team model by providing task variety, autonomy, team-specific goals, and feedback in order to increase team effectiveness. Data support the supposed causal chain, although only with respect to team innovative behavior all required effects were statistically significant. Longitudinal designs and larger samples are needed to prove the assumed causal relationships, but results indicate that implementing self-regulating teams might be an effective strategy for improving innovative behavior and thus team and company effectiveness.
Resumo:
This paper explores the management structure of the team-based organization. First it provides a theoretical model of structures and processes of work teams. The structure determines the team’s responsibilities in terms of authority and expertise about specific regulation tasks. The responsiveness of teams to these responsibilities are the processes of teamwork, in terms of three dimensions, indicating to what extent teams indeed use the space provided to them. The research question that this paper addresses is to what extent the position of responsibilities in the team-based organization affect team responsiveness. This is done by two hypotheses. First, the effect of the so-called proximity of regulation tasks is tested. It is expected that the responsibility for tasks positioned higher in the organization (i.e. further from the team) generally has a negative effect on team responsiveness, whereas tasks positioned lower in the organization (i.e. closer to the team) will have a positive effect on the way in which teams respond. Second, the relationship between the number of tasks for which the team is responsible with team responsiveness is tested. Theory suggests that teams being responsible for a larger number of tasks perform better, i.e. show higher responsiveness. These hypotheses are tested by a study of 109 production teams in the automotive industry. The results show that, as the theory predicts, increasing numbers of responsibilities have positive effects on team responsiveness. However, the delegation of expertise to teams seems to be the most important predictor of responsiveness. Also, not all regulation tasks show to have effects on team responsiveness. Most tasks do not show to have any significant effect at all. A number of tasks affects team responsiveness positively, when their responsibility is positioned lower in the organization, but also a number of tasks affects team responsiveness positively when located higher in the organization, i.e. further from the teams in the production. The results indicate that more attention can be paid to the distribution of responsibilities, in particular expertise, to teams. Indeed delegating more expertise improve team responsiveness, however some tasks might be located better at higher organizational levels, indicating that there are limitations to what responsibilities teams can handle.
Resumo:
This work describes the synthesis and characterization of a series of new α-diimine and P,O, β-keto and acetamide phosphines ligands, and their complexation to Ni(II), Co(II),Co(III) and Pd(II) to obtain a series of new compounds aiming to study their structural characteristics and to test their catalytic activity. All the compounds synthesized were characterized by the usual spectroscopic and spectrometric techniques: Elemental Analysis, MALDI-TOF-MS spectrometry, IR, UV-vis, 1H, 13C and 31P NMR spectroscopies. Some of the paramagnetic compounds were also characterized by EPR. For the majority of the compounds it was possible to solve their solid state structure by single crystal X-ray diffraction. Tests for olefin polymerization were performed in order to determine the catalytic activity of the Co(II) complexes. Chapter I presents a brief introduction to homogenous catalysis, highlighting the reactions catalyzed by the type of compounds described in this thesis, namely olefin polymerization and oligomerization and reactions catalyzed by the complexes bearing α-diimines and P,O type ligands. Chapter II is dedicated to the description of the synthesis of new α-diimines cobalt (II) complexes, of general formula [CoX2(α-diimine)], where X = Cl or I and the α-diimines are bis(aryl)acenaphthenequinonediimine) (Ar-BIAN) and 1,4-diaryl-2,3-dimethyl-1,4-diaza-1,3-butadiene (Ar-DAB). Structures solved by single crystal X-ray diffraction were obtained for all the described complexes. For some of the compounds, X-band EPR measurements were performed on polycrystalline samples, showing a high-spin Co(II) (S = 3/2) ion, in a distorted axial environment. EPR single crystal experiments on two of the compounds allowed us to determine the g tensor orientation in the molecular structure. In Chapter III we continue with the synthesis and characterization of more cobalt (II)complexes bearing α-diimines of general formula [CoX2(α-diimine)], with X = Cl or I and α-diimines are bis(aryl)acenaphthenequinonediimine) (Ar-BIAN) and 1,4-diaryl-2,3-dimethyl- 1,4-diaza-1,3-butadiene (Ar-DAB). The structures of three of the new compounds synthesized were determined by single crystal X-ray diffraction. A NMR paramagnetic characterization of all the compounds described is presented. Ethylene polymerization tests were done to determine the catalytic activity of several of the Co(II) complexes described in Chapter II and III and their results are shown. In Chapter IV a new rigid bidentate ligand, bis(1-naphthylimino)acenaphthene, and its complexes with Zn(II) and Pd(II), were synthesized. Both the ligand and its complexes show syn and anti isomers. Structures of the ligand and the anti isomer of the Pd(II) complex were solved by single crystal X-ray diffraction. All the compounds were characterized by elemental analysis, MALDI-TOF-MS spectrometry, and by IR, UV-vis, 1H, 13C, 1H-1H COSY, 1H-13C HSQC, 1H-13C HSQC-TOCSY and 1H-1H NOESY NMR when necessary. DFT studies showed that both conformers of [PdCl2(BIAN)] are isoenergetics and can be obtain experimentally. However, we can predict that the isomerization process is not available in square-planar complex, but is possible for the free ligand. The molecular geometry is very similar in both isomers, and only different orientations for naphthyl groups can be expected. Chapter V describes the synthesis of new P, O type ligands, β-keto phosphine, R2PCH2C(O)Ph, and acetamide phosphine R2PNHC(O)Me, as well as a series of new cobalt(III) complexes namely [(η5-C5H5)CoI2{Ph2PCH2C(O)Ph}], and [(η5- C5H5)CoI2{Ph2PNHC(O)Me}]. Treating these Co(III) compounds with an excess of Et3N, resulted in complexes η2-phosphinoenolate [(η5-C5H5)CoI{Ph2PCH…C(…O)Ph}] and η2- acetamide phosphine [(η5-C5H5)CoI{Ph2PN…C(…O)Me}]. Nickel (II) complexes were also obtained: cis-[Ni(Ph2PN…C(…O)Me)2] and cis-[Ni((i-Pr)2PN…C(…O)Me)2]. Their geometry and isomerism were discussed. Seven structures of the compounds described in this chapter were determined by single crystal X-ray diffraction. The general conclusions of this work can be found in Chapter VI.
Resumo:
Radio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively. © 2014 IEEE.
Resumo:
Consider the problem of sharing a wireless channel between a set of computer nodes. Hidden nodes exist and there is no base station. Each computer node hosts a set of sporadic message streams where a message stream releases messages with real-time deadlines. We propose a collision-free wireless medium access control (MAC) protocol which implements staticpriority scheduling. The MAC protocol allows multiple masters and is fully distributed. It neither relies on synchronized clocks nor out-of-band signaling; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel. Our protocol has the key feature of not only being prioritized and collision-free but also dealing successfully with hidden nodes. This key feature enables schedulability analysis of sporadic message streams in multihop networks.
Resumo:
Laminate composite multi-cell structures have to support both axial and shear stresses when sustaining variable twist. Thus the properties and design of the laminate may not be the most adequate at all cross-sections to support the torsion imposed on the cells. In this work, the effect of some material and geometric parameters on the optimal mechanical behaviour of a multi-cell composite laminate structure is studied when torsion is present. A particle swarm optimization technique is used to maximize the multi-cell structure torsion constant that can be used to obtain the angle of twist of the composite laminate profile.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
The aim of the present work was to characterize the internal structure of nanogratings generated inside bulk fused silica by ultrafast laser processing and to study the influence of diluted hydrofluoric acid etching on their structure. The nanogratings were inscribed at a depth of 100 mu m within fused silica wafers by a direct writing method, using 1030 nm radiation wavelength and the following processing parameters: E = 5 mu J, tau = 560 fs, f = 10 kHz, and v = 100 mu m/s. The results achieved show that the laser-affected regions are elongated ellipsoids with a typical major diameter of about 30 mu m and a minor diameter of about 6 mu m. The nanogratings within these regions are composed of alternating nanoplanes of damaged and undamaged material, with an average periodicity of 351 +/- 21 nm. The damaged nanoplanes contain nanopores randomly dispersed in a material containing a large density of defects. These nanopores present a roughly bimodal size distribution with average dimensions for each class of pores 65 +/- 20 x 16 +/- 8 x 69 +/- 16 nm(3) and 367 +/- 239 x 16 +/- 8 x 360 +/- 194 nm(3), respectively. The number and size of the nanopores increases drastically when an hydrofluoric acid treatment is performed, leading to the coalescence of these voids into large planar discontinuities parallel to the nanoplanes. The preferential etching of the damaged material by the hydrofluoric acid solution, which is responsible for the pores growth and coalescence, confirms its high defect density. (C) 2014 AIP Publishing LLC.