884 resultados para Chemical etching method combining static etching and dynamic etching
Resumo:
The role of matter has remained central to the making and the thinking of architecture, yet many attempts to capture its essence have been trapped in a dialectic tension between form and materiality, between material consistency and immaterial modes of perception, between static states and dynamic processes, between the real and the virtual, thus advancing an increasing awareness of the perplexing complexity of the material world. Within that complexity, the notion of agency – emerging from and within ecological, politico-economic and socio-cultural processes – calls for a reconceptualization of matter, and consequently processes of materialisation, offering a new understanding of context and space, approached as a field of dynamic relationships. In this context, cutting across boundaries between architectural discourse and practice as well as across the vast trans-disciplinary territory, this dissertation aims to illustrate a variety of design methodologies that have derived from the relational approach. More specifically, the intention is to offer new insights into spatial epistemologies embedded within the notion of atmosphere – commonly associated with the so-called New Phenomenology – and to reflect upon its implications for architectural production. In what follows, the intended argumentation has a twofold dimension. First, through a scrutiny of the notion of atmosphere, the aim is to explore ways of thinking and shaping reality through relations, thus acknowledging the aforementioned complexity of the material universe disclosed through human and non-human as well as material and immaterial forces. Secondly, despite the fact that concerns for atmospherics have flourished over the last few decades, the objective is to reveal that the conceptual foundations and procedures for the production of atmosphere might be found beneath the surface of contemporary debates. Hence, in order to unfold and illustrate previously advocated assumptions, an archaeological approach is adopted, tracing a particular projective genealogy, one that builds upon an atmospheric awareness. Accordingly, in tracing such an atmospheric awareness the study explores the notoriously ambiguous nature and the twofold dimension of atmosphere – meteorological and aesthetic – and the heterogeneity of meanings embedded in them. In this context, the notion of atmosphere is presented as parallactic. It transgresses the formal and material boundaries of bodies. It calls for a reevaluation of perceptual experience, opening a new gap that exposes the orthodox space-bodyenvironment relationships to questioning. It offers to architecture an expanded domain in which to manifest itself, defining architectural space as a contingent construction and field of engagement, and presenting matter as a locus of production/performance/action. Consequently, it is such an expanded or relational dimension that constitutes the foundation of what in the context of this study is to be referred to as affective tectonics. Namely, a tectonics that represents processual and experiential multiplicity of convergent time and space, body and environment, the material and the immaterial; a tectonics in which matter neither appears as an inert and passive substance, nor is limited to the traditionally regarded tectonic significance or expressive values, but is presented as an active element charged with inherent potential and vitality. By defining such a relational materialism, the intention is to expand the spectrum of material attributes revealing the intrinsic relationships between the physical properties of materials and their performative, transformative and affective capacities, including effects of interference and haptic dynamics – i.e. protocols of transmission and interaction. The expression that encapsulates its essence is: ACTIVE MATERIALITY RESUMEN El significado de la materia ha estado desde siempre ligado al pensamiento y el quehacer arquitectónico. Sin embargo, muchos intentos de capturar su esencia se han visto sumergidos en una tensión dialéctica entre la forma y la materialidad, entre la consistencia material y los modos inmateriales de la percepción, entre los estados estáticos y los procesos dinámicos, entre lo real y lo virtual, revelando una creciente conciencia de la desconcertante complejidad del mundo material. En esta complejidad, la noción de la operatividad o capacidad agencial– que emerge desde y dentro de los procesos ecológicos, políticos y socio-culturales– requiere de una reconceptualización de la materia y los procesos inherentes a la materialización, ofreciendo una nueva visión del contexto y el espacio, entendidos como un campo relacional dinámico. Oscilando entre el discurso arquitectónico y la práctica arquitectónica, y atravesando un extenso territorio trans-disciplinar, el objetivo de la presente tesis es ilustrar la variedad de metodologías proyectuales que emergieron desde este enfoque relacional. Concretamente, la intención es indagar en las epistemologías espaciales vinculadas a la noción de la atmósfera– generalmente asociada a la llamada Nueva Fenomenología–, reflexionando sobre su impacto en la producción arquitectónica. A continuación, el estudio ofrece una doble línea argumental. Primero, a través del análisis crítico de la noción de atmósfera, el objetivo es explorar maneras de pensar y dar forma a la realidad a través de las relaciones, reconociendo la mencionada complejidad del universo material revelado a través de fuerzas humanas y no-humanas, materiales e inmateriales. Segundo, a pesar de que el interés por las atmósferas ha florecido en las últimas décadas, la intención es demostrar que las bases conceptuales y los protocolos proyectuales de la creación de atmósferas se pueden encontrar bajo la superficie de los debates contemporáneos. Para corroborar e ilustrar estas hipótesis se propone una metodología de carácter arqueológico, trazando una particular genealogía de proyectos– la que se basa en una conciencia atmosférica. Asimismo, al definir esta conciencia atmosférica, el estudio explora tanto la naturaleza notoriamente ambigua y la dimensión dual de la atmósfera– meteorológica y estética–, como la heterogeneidad de significados derivados de ellas. En este contexto, la atmósfera se entiende como un concepto detonante, ya que sobrepasa los limites formales y materiales de los cuerpos, llevando a la re-evaluación de la experiencia perceptiva y abriendo a preguntas la ortodoxa relación espacio- cuerpo-ambiente. En consecuencia, la noción de la atmósfera ofrece a la arquitectura una dimensión expandida donde manifestarse, definiendo el espacio como una construcción contingente, performativa y afectiva, y presentando la materia como locus de producción/ actuación/ acción. Es precisamente esta dimensión expandida relacional la que constituye una base para lo que en el contexto del presente estudio se define como una tectónica afectiva. Es decir, una tectónica que representa una multiplicidad procesual y experiencial derivada de la convergencia entre el tiempo y el espacio, el cuerpo y el entorno, lo material y lo inmaterial; una tectónica en la que la materia no aparece como una substancia pasiva e inerte, ni es limitada al significado considerado tradicionalmente constructivo o a sus valores expresivos, sino que se presenta como elemento activo cargado de un potencial y vitalidad inherentes. A través de la definición de este tipo de materialismo afectivo, la intención es expandir el espectro de los atributos materiales, revelando las relaciones intrínsecas entre las propiedades físicas de los materiales y sus capacidades performativas, transformativas y afectivas, incluyendo efectos de interferencias y dinámicas hápticas– o dicho de otro modo, protocolos de transmisión e interacción. Una expresión que encapsula su esencia vendría a ser: MATERIALIDAD ACTIVA
Resumo:
Introduction: Mechanical stress is often associated to interverterbal disc (IVD) degeneration and the effect of mechanical loading on IVD has been studied and reviewed.1,2 Previously, expression of heat shock proteins, HSP70 and HSP27 has been found in pathological discs.3 However, there is no direct evidence on whether IVD cells respond to the mechanical loading by expression of HSPs. The objective of this study is to investigate the stress response of IVD cells during compressive loading in an organ culture. Materials and Methods: Fresh adult bovine caudal discs were cultured with compressive loading applied at physiological range. Effect of loading type (static and dynamic) and repeated loading (2 hours per day for 2 days) were studied. Nucleus pulposus (NP) and annulus fibrosus (AF) of the IVD were retrieved at different time points: right after loading and right after resting. Positive control discs were heat shocked (43°C). Cell activity was assessed and expression of stress response genes (HSP70 and HSF1) and matrix remodeling genes (ACAN, COL2, COL1, ADAMTS4, MMP3 and MMP13) were studied. Results: Cell activity was maintained in all groups. Both NP and AF expressed high level of HSP70 in heat shock groups, confirming their expression in response to stress. In NP, expression of HSP70 was up-regulated after static loading and dynamic loading with higher fold change was observed after static loading. During repeated loading, HSP70 appeared to be upregulated right after loading and decreased after resting. Such trend was not observed in AF and HSF1 levels. Expressions of matrix remodeling genes did not change significantly with loading except ADAMTS4 decreased in AF during static loading. Conclusion: This study demonstrated that NP cells upregulate expression of HSP70 in response to loading induced stress without changing cell activity and matrix remodeling significantly. Acknowledgments: This project was funded by AO Spine (AOSPN) (grant number: SRN_2011_14) and a fellowship exchange award by AO Spine Scientific Research Network (SRN).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Concrete is heterogeneous and usually described as a three-phase material, where matrix, aggregate and interface are distinguished. To take this heterogeneity into consideration, the Generalized Beam (GB) lattice model is adopted. The GB lattice model is much more computationally efficient than the beam lattice model. Numerical procedures of both quasi-static method and dynamic method are developed to simulate fracture processes in uniaxial tensile tests conducted on a concrete panel. Cases of different loading rates are compared with the quasi-static case. It is found that the inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, an unrealistic result will be obtained if a fracture process including unstable cracking is simulated by the quasi-static procedure.
Resumo:
gamma-LiAlO2 single crystal was successfully grown by Czochralski method. The crystal quality was characterized by X-ray rocking curve and chemical etching. The effects of air-annealing and vapor transport equilibration (VTE) on the crystal quality, etch pits and absorption spectra of LiAlO2 were also investigated in detail. The results show that the as-grown crystal has very high quality with the full width at half maximum (FWHM) of 17.7-22.6 arcsec. Dislocation density in the middle part of the crystal is as low as about 3.0 x 10(3) cm(-2). The VTE-treated slice has larger FWHM value, etch pits density and absorption coefficient as compared with those of untreated and air-annealed slices, which indicates that the crystal quality became inferior after VTE treatment. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
GaAs/AlGaAs quantum dot arrays with different dot sizes made by different fabrication processes were studied in this work. In comparison with the reference quantum well, photoluminescence (PL) spectra from the samples at low temperature have demonstrated that PL peak positions shift to higher energy side due to quantization confinement effects and the blue-shift increases with decreasing dot size, PL linewidths are broadened and intensities are much reduced. It is also found that wet chemical etching after reactive ion etching can improve optical properties of the quantum dot arrays.
Resumo:
The zircon mineral is widely studied in geochronology. In the case of the fission track method (FTM), the age is determined by the density of fission tracks at the zircon surface, which can be observed with an optical microscope after an appropriate chemical treatment (etching). The etching must be isotropic at the zircon grain surface to be used in the FTM, which leads those zircon grains whose etching is anisotropic to be discarded. The only reason for this discarding is the nonuniform morphology of the surface grain seen by optical microscopy, that is, no further physicochemical analysis is performed. In this work, combining micro-Raman and scanning electron microscopy (SEM) to study the etching anisotropy, it was shown that zircon grains that present at least one area at the surface where the density of fission track is uniform can be used in the FTM. The micro-Raman showed characteristic spectra of the standard zircon sample either from the areas where there are tracks or from where there are not. The only difference found was in the Raman bandwidths, which were broader for the areas with higher density of fission tracks. This suggests simply a decrease in the relative percentage of the crystalline/amorphous phases at these areas. The SEM/energy dispersive spectrometry (EDX) showed that there were no significant differences in the principal chemical composition at the areas with and without fission tracks. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
The present study was designed to analyse the average depth of the microporosity of a nickel-chromium (Ni-Cr) system alloy (Verabond II). The metal surface was subject to one of the following surface treatment: (i) Electrolytic etching in nitric acid 0.5 N at a current density of 250 mA cm(-2) ; (ii) chemical etching with CG-Etch etchant; and (iii) Sandblasting with alumina particles 50 mum. Half of the samples were polished before the surface treatments. The depth of porosity was measured through photomicrographs (500x) with a profilometer, and the data were statistically analysed using an analysis of variance (anova) followed by Tukey's test. The conclusions were (i) Differents surface treatment of the Ni-Cr system alloy lead to different depths of microporosity; (ii) the greatest depth of porosity was observed in non-polished alloy; (iii) the greatest and identical depth of microporosity was observed following electrolytic etching and chemical etching; (iv) the least and identical depth of microporosity was observed with chemical etching and sandblasting with alumina particles 50 mum, and (v) Chemical etching showed an intermediary depth.
Resumo:
Bulk samples of tellurite glass with composition 75TeO(2)-20ZnO-5Na(2)O (TZN) were fabricated by melting and quenching techniques. In order to improve the surface quality of optical fiber preform made with this tellurite glass, the authors developed a multistage etching process. The relationship between successive etching treatments and roughness of the TZN glass surface was probed by using an atomic force microscope. The results demonstrate that this multistage etching method effectively improves this tellurite glass surface smoothness to a level comparable with that of a reference silica glass slide, and the corresponding chemical micromechanisms and fundamentals are discussed and confirmed by atomic force microscopy, potentially contributing to the development of multicomponent soft glass fibers and devices. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3437017]
Resumo:
The progress in microsystem technology or nano technology places extended requirements to the fabrication processes. The trend is moving towards structuring within the nanometer scale on the one hand, and towards fabrication of structures with high aspect ratio (ratio of vertical vs. lateral dimensions) and large depths in the 100 µm scale on the other hand. Current procedures for the microstructuring of silicon are wet chemical etching and dry or plasma etching. A modern plasma etching technique for the structuring of silicon is the so-called "gas chopping" etching technique (also called "time-multiplexed etching"). In this etching technique, passivation cycles, which prevent lateral underetching of sidewalls, and etching cycles, which etch preferably in the vertical direction because of the sidewall passivation, are constantly alternated during the complete etching process. To do this, a CHF3/CH4 plasma, which generates CF monomeres is employed during the passivation cycle, and a SF6/Ar, which generates fluorine radicals and ions plasma is employed during the etching cycle. Depending on the requirements on the etched profile, the durations of the individual passivation and etching cycles are in the range of a few seconds up to several minutes. The profiles achieved with this etching process crucially depend on the flow of reactants, i.e. CF monomeres during the passivation cycle, and ions and fluorine radicals during the etching cycle, to the bottom of the profile, especially for profiles with high aspect ratio. With regard to the predictability of the etching processes, knowledge of the fundamental effects taking place during a gas chopping etching process, and their impact onto the resulting profile is required. For this purpose in the context of this work, a model for the description of the profile evolution of such etching processes is proposed, which considers the reactions (etching or deposition) at the sample surface on a phenomenological basis. Furthermore, the reactant transport inside the etching trench is modelled, based on angular distribution functions and on absorption probabilities at the sidewalls and bottom of the trench. A comparison of the simulated profiles with corresponding experimental profiles reveals that the proposed model reproduces the experimental profiles, if the angular distribution functions and absorption probabilities employed in the model is in agreement with data found in the literature. Therefor the model developed in the context of this work is an adequate description of the effects taking place during a gas chopping plasma etching process.
Resumo:
Ferroelectric CaBi4Ti4O15 (CBTi144) thin films were deposited on Pt/Ti/SiO2/Si substrates by the polymeric precursor method. The films present a single phase of layered-structured perovskite with polar axis orientation after annealing at 700 degrees C for 2 h in static air and oxygen atmosphere. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. It is noted that the films annealed in static air showed good polarization fatigue characteristics at least up to 10(10) bipolar pulse cycles and excellent retention properties up to 10(4) s. on the other hand, oxygen atmosphere seems to be crucial in the decrease of both, fatigue and retention characteristics of the capacitors. Independently of the applied electric field, the retained switchable polarization approached a nearly steady-state value after a retention time of 10 s. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: This study investigated the effect of chemical conjugation of the amino acid L-leucine to the polysaccharide chitosan on the dispersibility and drug release pattern of a polymeric nanoparticle (NP)-based controlled release dry powder inhaler (DPI) formulation. Methods: A chemical conjugate of L-leucine with chitosan was synthesized and characterized by Infrared (IR) Spectroscopy, Nuclear Magnetic Resonance (NMR) Spectroscopy, Elemental Analysis and X-ray Photoelectron Spectroscopy (XPS). Nanoparticles of both chitosan and its conjugate were prepared by a water-in-oil emulsification – glutaraldehyde cross-linking method using the antihypertensive agent, diltiazem (Dz) hydrochloride as the model drug. The surface morphology and particle size distribution of the nanoparticles were determined by Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). The dispersibility of the nanoparticle formulation was analysed by a Twin Stage Impinger (TSI) with a Rotahaler as the DPI device. Deposition of the particles in the different stages was determined by gravimetry and the amount of drug released was analysed by UV spectrophotometry. The release profile of the drug was studied in phosphate buffered saline at 37 ⁰C and analyzed by UV spectrophotometry. Results: The TSI study revealed that the fine particle fractions (FPF), as determined gravimetrically, for empty and drug-loaded conjugate nanoparticles were significantly higher than for the corresponding chitosan nanoparticles (24±1.2% and 21±0.7% vs 19±1.2% and 15±1.5% respectively; n=3, p<0.05). The FPF of drug-loaded chitosan and conjugate nanoparticles, in terms of the amount of drug determined spectrophotometrically, had similar values (21±0.7% vs 16±1.6%). After an initial burst, both chitosan and conjugate nanoparticles showed controlled release that lasted about 8 to 10 days, but conjugate nanoparticles showed twice as much total drug release compared to chitosan nanoparticles (~50% vs ~25%). Conjugate nanoparticles also showed significantly higher dug loading and entrapment efficiency than chitosan nanoparticles (conjugate: 20±1% & 46±1%, chitosan: 16±1% & 38±1%, n=3, p<0.05). Conclusion: Although L-leucine conjugation to chitosan increased dispersibility of formulated nanoparticles, the FPF values are still far from optimum. The particles showed a high level of initial burst release (chitosan, 16% and conjugate, 31%) that also will need further optimization.
Resumo:
A novel near-infrared spectroscopy (NIRS) method has been researched and developed for the simultaneous analyses of the chemical components and associated properties of mint (Mentha haplocalyx Briq.) tea samples. The common analytes were: total polysaccharide content, total flavonoid content, total phenolic content, and total antioxidant activity. To resolve the NIRS data matrix for such analyses, least squares support vector machines was found to be the best chemometrics method for prediction, although it was closely followed by the radial basis function/partial least squares model. Interestingly, the commonly used partial least squares was unsatisfactory in this case. Additionally, principal component analysis and hierarchical cluster analysis were able to distinguish the mint samples according to their four geographical provinces of origin, and this was further facilitated with the use of the chemometrics classification methods-K-nearest neighbors, linear discriminant analysis, and partial least squares discriminant analysis. In general, given the potential savings with sampling and analysis time as well as with the costs of special analytical reagents required for the standard individual methods, NIRS offered a very attractive alternative for the simultaneous analysis of mint samples.
Resumo:
Cutting of Y2O3-doped TZP rods by a low-speed diamond saw introduces an unidentified, metastable phase X (x-ZrO2) coexisting with the tetragonal (t-ZrO2) and the monoclinic (m-ZrO2) phases initially present in the sample. Further mechanical deformation of the cut surface by indentation or polishing sustains the x-ZrO2. Chemical etching removes the x-ZrO2 and increases the m-ZrO2content.