811 resultados para Carbon materials performance
Resumo:
Glassy carbon electrodes were coated with films of poly( glutamic acid) ( PG), and the modified electrode proved to be very effective in the oxidation of caffeic acid. The performance of the film was also tested with ascorbic acid, coumaric acid, ferulic acid, sinapic acid and chlorogenic acid. At pH 5.6, all the hydroxycinnamic acids yield a higher peak current intensity when oxidized after incorporation in the PG-modified electrode, and only the oxidation of ascorbic acid exhibits overpotential reduction. At pH 3.5 only caffeic and chlorogenic acid are incorporated in the modified electrode and exhibit a well-defined oxidation wave at +0.51 V and +0.48 V, which is the base for their determination. Linear calibration graphs were obtained from 9 x 10(-6) mol L-1 to 4 x 10(-5) mol L-1 caffeic acid by linear voltammetric scan and from 4 x 10(-6) mol L-1 to 3 x 10(-5) mol L-1 by square wave voltammetric scan. The method was successfully applied to the determination of caffeic acid in red wine samples without interference from other hydroxycinnamic acids or ascorbic acid.
Resumo:
A film of poly-L-lysine (PLL) adheres better to the surface of a glassy carbon electrode when the PLL is partially cross-linked by means of glutaraldehyde. A film composition of 97.5% PLL/2.5% glutaraldehyde gives good adhesion and retains the anionic exchange capability of the PLL. The performance of the film was tested with hexacyanoferrate(III) using electrochemical and nonelectrochemical accumulation.
Resumo:
Objective: This study compares wound healing efficiency on a rat's skin when the incision was closed with a conventional suture versus vaporized with a CO2 laser. Materials and Methods: In this study, 24 rats were used, and two longitudinal incisions were made with a conventional scalpel in the dorsum of each rat. The left incision was sutured with nylon thread, and the right incision was closed by vaporization with a defocused CO2 laser in continuous mode with an 8-watt power density. Clinical photographs were taken immediately after the procedure, 24 h later, and after 3, 7, 14, and 21 days, documenting the healing of the incision. Results: the results showed that there was an initial delay in wound repair in the vaporized incision as compared to the scalpel incision, but after 21 days, both incisions showed the same clinical characteristics. However, the vaporized incision showed no trauma of the tissue, as opposed to the sutured incision, and no hemorrhagic complications. Conclusion: These results suggest that the CO2 laser can eventually replace the use of sutures.
Resumo:
The cyclic voltammetric behavior of acetaldehyde and the derivatized product with 2,4-dinitrophenylhydrazine (DNPHi) has been studied at a glassy carbon electrode. This study was used to optimize the best experimental conditions for its determination by high-performance liquid chromatographic (HPLC) separation coupled with electrochemical detection. The acetaldehyde-2,4-dinitrophenyl.hydrazone (ADNPH) was eluted and separated by a reversed-phase column, C-18, under isocratic conditions with the mobile phase containing a binary mixture of methanol/LiCl(aq) at a concentration of 1.0 x 10(-3) M (80:20 v/v) and a flow rate of 1.0 mL min(-1). The optimum condition for the electrochemical detection of ADNPH was +1.0 V vs. Ag/AgCl as a reference electrode. The proposed method was simple, rapid (analysis time 7 min) and sensitive (detection limit 3.80 mu g L-1) at a signal-to-noise ratio of 3:1. It was also highly selective and reproducible [standard deviation 8.2% +/- 0.36 (n = 5)]. The analytical curve of ADNPH was linear over the range of 3-300 mg L-1 per injection (20 mu L), and the analytical recovery was > 99%.
Resumo:
The ability of photoelectrocatalytic oxidation to degrade the commercially important copper-plitalocyanine dye, remazol turquoise blue 15 (RTB) was investigated. The best experimental condition was optimized, evaluating the performance of Ti/TiO2 thin-film electrodes prepared by sol-gel method in the decolourization of 32 mg L-1 RTB dye in 0.5 mol L-1 Na2SO4 pH 8 and applied potential of +1.5 V versus SCE under UV irradiation. Spectrophotometric measurements, high performance liquid chromatography, dissolved organic carbon (TOC) evaluation and stripping analysis of yielding solution obtained after 3 h of photoelectrolysis leads to 100% of absorbance removal from wavelength of 250-800 nm, 79.6% of TOC reduction and the releasing of up to 54.6% dye-bound copper (0.85 mg L-1) into the solution. Both, original and oxidized dye solution did not presented mutagenic activity with the strains TA98 and WOO of Salmonella in the presence and absence of S9 mix at the tested doses. Nevertheless, the yielding photoelectrocatalytic oxidized solution showed an increase in the acute toxicity for Vibrio fischeri bacteria, explained by copper liberation during treatment. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A new methodology was developed for analysis of aldehydes and ketones in fuel ethanol by high-performance liquid chromatography (HPLC) coupled to electrochemical detection. The electrochemical oxidation of 5-hydroxymetkylfurfural, 2-furfuraldehyde, butyraldehyde, acetone and methyl ethyl ketone derivatized with 2,4-dinitrophenylhydrazine (DNPH) at glassy carbon electrode present a well defined wave at +0.94 V; +0.99 V; +1.29 V; +1.15 V and +1.18 V, respectively which are the basis for its determination on electrochemical defector. The carbonyl compounds derivatized were separated by a reverse-phase column under isocratic conditions with a mobile phase containing a binary mixture of methanol /LiClO4(aq) at a concentration of 1.0 x 10(-3) mol L-1 (80:20 v/v) and a flow-rate of 1.1 mL min(-1). The optimum potential for the electrochemical detection of aldehydes-DNPH and ketones-DNPH was +1.0 V vs. Ag/AgCl. The analytical curve of aldehydes-DNPH and ketones-DNPH presented linearity over the range 5.0 to 400.0 ng mL(-1), with detection limits of 1.7 to 2.0 ng mL(-1) and quantification limits from 5.0 to 6.2 ng mL(-1), using injection volume of 20 mu L. The proposed methodology was simple, low time-consuming (15 min/analysis) and presented analytical recovery higher than 95%.
Resumo:
Rhizopus microsporus var. rhizopodiformis produced high levels of alpha-amylase and glucoamylase under solid state fermentation, with several agricultural residues, such as wheat bran, cassava flour, sugar cane bagasse, rice straw, corncob and crushed corncob as carbon sources. These materials were humidified with distilled water, tap water, or saline solutions-Segato Rizzatti (SR), Khanna or Vogel. The best substrate for amylase production was wheat bran with SR saline solution (1:2 v/v). Amylolytic activity was still improved (14.3%) with a mixture of wheat bran, corncob, starch and SR saline solution (1:1:0.3:4.6 w/w/w/v). The optimized culture conditions were initial pH 5, at 45 degrees C during 6 days and relative humidity around 76%. The crude extract exhibited temperature and pH optima around 65 degrees C and 4-5, respectively. Amylase activity was fully stable for 1 h at temperatures up to 75 degrees C, and at pH values between 2.5 and 7.5.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The tension-tension fatigue behavior of metal/fiber laminates (MFLs) has been investigated. These MFLs were produced with carbon fiber and by treating the aluminum foil to promote adhesion bonding by two methods: sulfuric-boric-oxalic acid anodization (SBOA) and chromic acid anodization (CAA). The surface treatments were evaluated by scanning electron microscopy (SEM) techniques and roughness measurements. It was observed that MFL specimens produced with SBOA treatments presents comparable mechanical results when compared with MFLs produced with CAA treatment. Microstructural observations of the fracture surfaces by SEM show hackle formation is the predominant damage mechanism.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Electronic and optical properties of recently discovered single-shell carbon cluster nanotubes are studied through a semiempirical INDOCI method. The calculations are performed within the cluster model and include up to 196 atoms. The trend of the forbidden band gap with the number of carbon atoms (Cn n = 60, 10, 140) for a fixed diameter is analyzed. With increasing n the band gap decreases, as expected. The tubule, with diameter of 7.2Å (as C60-Buckyball) is predicted to be a metal or a narrow-gap semiconductor. The calculated absorption spectra of the clusters show a characteristic strong peak around 40,000 cm-1. Other features of the calculated UV-visible absorption spectra are discussed. © 1994.
Resumo:
Measurements of 1H Nuclear Magnetic Resonance (NMR) relaxation times, Electron Paramagnetic Resonance (EPR) and AC Impedance Spectroscopy (IS) are reported for composites based on PEO8:LiClO4 and carbon black (CB), prepared by two methods: solvent and fusion processing. Three nuclear relaxation processes were identified for 1H nuclei: (i) belonging to the polymer chains in the amorphous phase, loosely bound to the CB particles, whose dynamics is almost the same as for unfilled polymer, (ii) belonging to the polymer chains which are tightly attached to the CB particles, and (iii) belonging to the crystalline phase in the loose polymer chain. The paramagnetic electronic susceptibility of the composite samples, measured by EPR, was interpreted by assuming a contribution of localized spin states that follow a Curie law, and a Pauli-like contribution of delocalized spins. A significant change of the EPR linewidth was observed at 40 K, which is the temperature where the Curie and Pauli susceptibilities equally contribute to the paramagnetic electronic susceptibility. The electrical properties are very sensitive to the preparation methods of the composites, which conditions the interaction between carbon particle-carbon particle and carbon particle-polymer chain. Classical statistic models to describe the conductivity in these media were not satisfactory. © 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
For retarding carbon oxidation in refractories during the preheating of metallurgical furnaces, a ceramic coating, made mainly of sodium phosphosilicate and clay was developed. The coating presents high adherence to the substrate with no swelling. The coating was characterized by thermal analysis, X-ray diffraction at room temperature (XRD) and at high temperature (HTXRD), X-ray fluorescence and scanning electronic microscopy (SEM). The glass transition temperature is reached at 800 °C and only glassy phase is observed above this temperature. Thus the mechanism of protection seems to be the formation of a glassy phase on the surface of the refractory, and the coating tends to be more efficient at temperatures higher than 800 °C.