993 resultados para Cape-Verde Archipelago


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We estimated the relative contribution of atmospheric Nitrogen (N) input (wet and dry deposition and N fixation) to the epipelagic food web by measuring N isotopes of different functional groups of epipelagic zooplankton along 23°W (17°N-4°S) and 18°N (20-24°W) in the Eastern Tropical Atlantic. Results were related to water column observations of nutrient distribution and vertical diffusive flux as well as colony abundance of Trichodesmium obtained with an Underwater Vision Profiler (UVP5). The thickness and depth of the nitracline and phosphocline proved to be significant predictors of zooplankton stable N isotope values. Atmospheric N input was highest (61% of total N) in the strongly stratified and oligotrophic region between 3 and 7°N, which featured very high depth-integrated Trichodesmium abundance (up to 9.4×104 colonies m-2), strong thermohaline stratification and low zooplankton delta15N (~2 per mil). Relative atmospheric N input was lowest south of the equatorial upwelling between 3 and 5°S (27%). Values in the Guinea Dome region and north of Cape Verde ranged between 45 and 50%, respectively. The microstructure-derived estimate of the vertical diffusive N flux in the equatorial region was about one order of magnitude higher than in any other area (approximately 8 mmol m-2 d 1). At the same time, this region received considerable atmospheric N input (35% of total). In general, zooplankton delta15N and Trichodesmium abundance were closely correlated, indicating that N fixation is the major source of atmospheric N input. Although Trichodesmium is not the only N fixing organism, its abundance can be used with high confidence to estimate the relative atmospheric N input in the tropical Atlantic (r2 = 0.95). Estimates of absolute N fixation rates are two- to tenfold higher than incubation-derived rates reported for the same regions. Our approach integrates over large spatial and temporal scales and also quantifies fixed N released as dissolved inorganic and organic N. In a global analysis, it may thus help to close the gap in oceanic N budgets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presence of Harpa doris Röding, 1798 in marine deposits of the last interglacial period, ~130-120 ka (marine isotope stage or MIS 5.5) in the Canary Islands (Gran Canaria, Lanzarote and Fuerteventura) enabled us to compare this occurrence with its present habitat in the Gulf of Guinea and the Cape Verde Islands, well to the south. This comparison leads to the conclusion that sea surface temperatures (SSTs) in the waters around the Canary Islands during the last interglacial period were at least 3.3 °C higher than today. H. doris is found in association with the large gastropod Persististrombus latus (Gmelin, 1791) as well as the coral Siderastrea radians (Pallas, 1766). The presence of these extralimital southern,warm-water species in the Canary Islands during the last interglacial period also implies a northward expansion of plankton-feeding larvae in seawater with a high chlorophyll-a content. Such conditionswould require a shortening of the southern arm of the cool Canary Current that dominates the waters around the Canary Islands at present. Marine deposits dating to ~400 ka (MIS 11) are also found on the Canary Islands. In these deposits, the presence of Saccostrea cucullata (Born, 1778) allows a comparison with its present habitat in the Gulf of Guinea. In this analysis, we conclude that SSTs in waters around the Canary Islands during this major interglacial period were at least 4.2 °C higher than today. Middle Pleistocene fossils of S. cucullata have also been found in the western Mediterranean Sea and Morocco, as well as the Cape Verde Islands. If these deposits also date to MIS 11, SST warming could have been a regional phenomenon, including much of the eastern Atlantic Ocean and Mediterranean Sea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El objetivo del presente proyecto es conseguir un sistema de abastecimiento energético donde el coste de la energía sea mínimo, contemplando la inclusión de generación mediante energías renovables. El emplazamiento elegido para este estudio es la isla de Brava, situada en el archipiélago de Cabo Verde, África. El estudio se hace mediante un programa informático que permite obtener un sistema económicamente óptimo según unos datos de entrada. Se realizan varios estudios de la isla, empezando por el sistema de abastecimiento actual y terminando por el sistema óptimo que ofrece como solución este proyecto. Además se incluye un análisis de emisiones para poder así comparar el sistema actual con la solución propuesta. Abstract The objective of this project is to be able to have an energetic supply system where energy cost would be as minimum as possible thanks to renewable energy. Brava Island, based in Cabo Verde archipelago (Africa), is the place chosen for that study. The study relies on a commercial software. This program permits to obtain an optimum economical system based on data entries. Several studies of the island have been made. First, a look at the current supply system has been carried out. Then, a focus on the optimum system this project will offer as a solution was performed. Moreover, it includes an emission generation analysis in order to be able to compare the current system toward the solution proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerous island-inhabiting species of predominantly herbaceous angiosperm genera are woody shrubs or trees. Such "insular woodiness" is strongly manifested in the genus Echium, in which the continental species of circummediterranean distribution are herbaceous, whereas endemic species of islands along the Atlantic coast of north Africa are woody perennial shrubs. The history of 37 Echium species was traced with 70 kb of noncoding DNA determined from both chloroplast and nuclear genomes. In all, 239 polymorphic positions with 137 informative sites, in addition to 27 informative indels, were found. Island-dwelling Echium species are shown to descend from herbaceous continental ancestors via a single island colonization event that occurred < 20 million years ago. Founding colonization appears to have taken place on the Canary Islands, from which the Madeira and Cape Verde archipelagos were invaded. Colonization of island habitats correlates with a recent origin of perennial woodiness from herbaceous habit and was furthermore accompanied by intense speciation, which brought forth remarkable diversity of forms among contemporary island endemics. We argue that the origin of insular woodiness involved response to counter-selection of inbreeding depression in founding island colonies.