951 resultados para CYCLOPENTADIENYL LIGAND
Resumo:
Signal transduction initiated by crosslinking of antigen-specific receptors on T- and B-lymphoma cells induces apoptosis. In T-lymphoma cells, such crosslinking results in upregulation of the APO-1 ligand, which then interacts with induced or constitutively expressed APO-1, thereby triggering apoptosis. Here we show that crosslinking the membrane immunoglobulin on human lymphoma cells (Daudi) (that constitutively express APO-1) does not induce synthesis of APO-1 ligand. Further, a noncytotoxic fragment of anti-APO-1 antibody that blocks T-cell-receptor-mediated apoptosis in T-lymphoma cells does not block anti-mu-induced apoptosis. Hence, in B-lymphoma cells, apoptosis induced by signaling via membrane IgM is not mediated by the APO-1 ligand.
Resumo:
Cu(II) ions have been reacted with a 1/1 mixture of two linear ligands, one containing three 2,2'- bipyridine groups and the other three 2,2':6',2"-terpyridine groups. Absorption spectroscopy and fast atom bombardment mass spectrometry indicate the formation of a trinuclear complex containing one ligand of each kind. Determination of the crystal structure of this compound has confirmed that it is indeed a linear trinuclear complex in which two different ligands are wrapped in a helical fashion around the pentacoordinated metal ions. The central coordination geometry is trigonal bipyramidal; the two lateral Cu(II) ions are in a square pyramidal environment. Thus, a heteroduplex helicate is formed by the self-assembly of two different ligand strands and three specific metal ions induced by the coordination number and geometry of the latter. The self-assembly process may be considered to result from the reading of the steric and binding information present in the two ligands by Cu(II) ions through a pentacoordination algorithm. The same ligands have been shown earlier to yield homoduplex helicates from ions of tetrahedral and octahedral coordination geometry and strands of bidentate bipyridines and tridentate terpyridines, respectively. These two types of artificial double helical species may be related on one hand to the natural homoduplex nucleic acids and on the other hand to the DNA:RNA heteroduplex.
Resumo:
Src homology 3 (SH3) domains are conserved protein modules 50-70 amino acids long found in a variety of proteins with important roles in signal transduction. These domains have been shown to mediate protein-protein interactions by binding short proline-rich regions in ligand proteins. However, the ligand preferences of most SH3 domains and the role of these preferences in regulating SH3-mediated protein-protein interactions remain poorly defined. We have used a phage-displayed library of peptides of the form X6PXXPX6 to identify ligands for eight different SH3 domains. Using this approach, we have determined that each SH3 domain prefers peptide ligands with distinct sequence characteristics. Specifically, we have found that the Src SH3 domain selects peptides sharing the consensus motif LXXRPLPXpsiP, whereas Yes SH3 selects psiXXRPLPXLP, Abl SH3 selects PPXthetaXPPPpsiP, Cortactin SH3 selects +PPpsiPXKPXWL, p53bp2 SH3 selects RPXpsiPpsiR+SXP, PLCgamma SH3 selects PPVPPRPXXTL, Crk N-terminal SH3 selects psiPpsiLPpsiK, and Grb2 N-terminal SH3 selects +thetaDXPLPXLP (where psi, theta, and + represent aliphatic, aromatic, and basic residues, respectively). Furthermore, we have compared the binding of phage expressing peptides related to each consensus motif to a panel of 12 SH3 domains. Results from these experiments support the ligand preferences identified in the peptide library screen and evince the ability of SH3 domains to discern subtle differences in the primary structure of potential ligands. Finally, we have found that most known SH3-binding proteins contain proline-rich regions conforming to the ligand preferences of their respective SH3 targets.
Resumo:
The extracellular factors that determine a cell's responsiveness to neurotransmitters are of particular relevance for pharmacologically diverse cell types such as neurons and smooth muscle. We previously demonstrated that matrix-associated factors are capable of dramatically and specifically suppressing the responsiveness of smooth muscle to the neuropeptide, substance P. We now demonstrate that this influence of extracellular matrix on the pharmacological phenotype of smooth muscle cells can be blocked specifically by an Arg-Gly-Asp (RGD)-containing antagonist of integrins. Of a battery of integrin ligands tested, only thrombospondin mimicked the effect of the extracellular matrix on substance P responsiveness. This effect of thrombospondin was dose dependent, RGD sensitive, and blocked by an antibody directed against the RGD-containing region of thrombospondin. Because the mRNA for thrombospondin is present in the cells of the chicken amnion, this extracellular factor may normally suppress substance P responsiveness in amniotic smooth muscle. The results suggest a role for matrix-associated integrin ligands in the regulation of cellular responses to specific neurotransmitters and hormones and in the development and maintenance of tissue-specific pharmacological properties.
Resumo:
We propose a general mean field model of ligand-protein interactions to determine the thermodynamic equilibrium of a system at finite temperature. The method is employed in structural assessments of two human immuno-deficiency virus type 1 protease complexes where the gross effects of protein flexibility are incorporated by utilizing a data base of crystal structures. Analysis of the energy spectra for these complexes has revealed that structural and thermo-dynamic aspects of molecular recognition can be rationalized on the basis of the extent of frustration in the binding energy landscape. In particular, the relationship between receptor-specific binding of these ligands to human immunodeficiency virus type 1 protease and a minimal frustration principle is analyzed.
Resumo:
The estrogen receptor (ER), a 66-kDa protein that mediates the actions of estrogens in estrogen-responsive tissues, is a member of a large superfamily of nuclear hormone receptors that function as ligand-activated transcription factors. ER shares a conserved structural and functional organization with other members of this superfamily, including two transcriptional activation functions (AFs), one located in its amino-terminal region (AF-1) and the second located in its carboxyl-terminal, ligand-binding region (AF-2). In most promoter contexts, synergism between AF-1 and AF-2 is required for full ER activity. In these studies, we demonstrate a functional interaction of the two AF-containing regions of ER, when expressed as separate polypeptides in mammalian cells, in response to 17 beta-estradiol (E2) and antiestrogen binding. The interaction was transcriptionally productive only in response to E2, and was eliminated by point or deletion mutations that destroy AF-1 or AF-2 activity or E2 binding. Our results suggest a definitive mechanistic role for E2 in the activity of ER--namely, to alter receptor conformation to promote an association of the amino- and carboxyl-terminal regions, leading to transcriptional synergism between AF-1 and AF-2. The productive re assembly of two portions of ER expressed in cells as separate polypeptides demonstrates the evolutionarily conserved modular structural and functional organization of the nuclear hormone receptors. The ligand-dependent interaction of the two AF-containing regions of ER allows for the assembly of a complete activation function from two distinct regions within the same protein, providing a mechanism for hormonally regulated transcription.
Resumo:
Although most nuclear hormone receptors are ligand-dependent transcriptional activators, certain members of this superfamily, such as thyroid hormone receptor (TR) and retinoic acid receptor (RAR), are involved in transcriptional repression. The silencing function of these receptors has been localized to the ligand binding domain (LBD). Previously, we demonstrated that overexpression of either the entire LBD or only the N-terminal region of the LBD (amino acids 168-259) is able to inhibit the silencing activity of TR. From this result we postulated the existence of a limiting factor (corepressor) that is necessary for TR silencing activity. To support this hypothesis, we identified amino acids in the N-terminal region of the LBD of TR that are important for the corepressor interaction and for the silencing function of TR. The silencing activity of TR was unaffected by overexpression of the LBD of mutant TR (V174A/D177A), suggesting that valine at position 174 and/or aspartic acid at position 177 are important for corepressor interaction. This mutant receptor protein, V174/D177, also lost the ability to silence target genes, suggesting that these amino acids are important for silencing function. Control experiments indicate that this mutant TR maintains its wild-type hormone binding and transactivation functions. These findings further strengthen the idea that the N-terminal region of the LBD of TR interacts with a putative corepressor protein(s) to achieve silencing of basal gene transcription.
Resumo:
The Src homology 3 (SH3) domain is a 50-aa modular unit present in many cellular proteins involved in intracellular signal transduction. It functions to direct protein-protein interactions through the recognition of proline-rich motifs on associated proteins. SH3 domains are important regulatory elements that have been demonstrated to specify distinct regulatory pathways important for cell growth, migration, differentiation, and responses to the external milieu. By the use of synthetic peptides, ligands have been shown to consist of a minimum core sequence and to bind to SH3 domains in one of two pseudosymmetrical orientations, class I and class II. The class I sites have the consensus sequence ZP(L/P)PP psi P whereas the class II consensus is PP psi PPZ (where psi is a hydrophobic residue and Z is a SH3 domain-specific residue). We previously showed by M13 phage display that the Src, Fyn, Lyn, and phosphatidylinositol 3-kinase (PI3K) SH3 domains preferred the same class I-type core binding sequence, RPLPP psi P. These results failed to explain the specificity for cellular proteins displayed by SH3 domains in cells. In the current study, class I and class II core ligand sequences were displayed on the surface of bacteriophage M13 with five random residues placed either N- or C-terminal of core ligand residues. These libraries were screened for binding to the Src, Fyn, Lyn, Yes, and PI3K SH3 domains. By this approach, additional ligand residue preferences were identified that can increase the affinity of SH3 peptide ligands at least 20-fold compared with core peptides. The amino acids selected in the flanking sequences were similar for Src, Fyn, and Yes SH3 domains; however, Lyn and PI3K SH3 domains showed distinct binding specificities. These results indicate that residues that flank the core binding sequences shared by many SH3 domains are important determinants of SH3 binding affinity and selectivity.
Resumo:
Staphylococcal enterotoxins (SE) stimulate T cells expressing the appropriate variable region beta chain of (V beta) T-cell receptors and have been implicated in the pathogenesis of several autoimmune diseases. Depending on costimulatory signals, SE induce either proliferation or anergy in T cells. In addition, SE can induce an interleukin-2 (IL-2) nonresponsive state and apoptosis. Here, we show that SE induce dynamic changes in the expression of and signal transduction through the IL-2 receptor (IL-2R) beta and gamma chains (IL-2R beta and IL-2R gamma) in human antigen-specific CD4+ T-cell lines. Thus, after 4 hr of exposure to SEA and SEB, the expression of IL-2R beta was down-regulated, IL-2R gamma was slightly up-regulated, while IL-2R alpha remained largely unaffected. The changes in the composition of IL-2Rs were accompanied by inhibition of IL-2-induced tyrosine phosphorylation of the Janus protein-tyrosine kinase 3 (Jak3) and signal transducers and activators of transcription called Stat3 and Stat5. In parallel experiments, IL-2-driven proliferation was inhibited significantly. After 16 hr of exposure to SE, the expression of IL-2R beta remained low, while that of IL2R alpha and IL2R gamma was further up-regulated, and ligand-induced tyrosine phosphorylation of Jak3 and Stat proteins was partly normalized. Yet, IL-2-driven proliferation remained profoundly inhibited, suggesting that signaling events other than Jak3/Stat activation had also been changed following SE stimulation. In conclusion, our data suggest that SE can modulate IL-2R expression and signal transduction involving the Jak/Stat pathway in CD4+ T-cell lines.
Resumo:
An in vitro selection technique was used to identify a specific high-affinity DNA ligand targeted to human neutrophil elastase (HNE). 1H NMR data and a comparative analysis of the selected sequences suggest that the DNA folds into a G-quartet structure with duplexed ends. The high-affinity binding DNA alone did not inhibit the enzymatic activity of HNE. The DNA was covalently attached to a tetrapeptide, N-methoxysuccinyl-Ala-Ala-Pro-Val, that is a weak competitive inhibitor of HNE. HNE was inhibited by this DNA-peptide conjugate nearly five orders of magnitude more effectively than by the peptide alone. These results demonstrate that in vitro-selected nucleic acids can be used as a vehicle for molecular delivery.
Resumo:
Using a reverse transcription-coupled PCR, we demonstrated that both brain and spleen type cannabinoid receptor (CB1-R and CB2-R, respectively) mRNAs are expressed in the preimplantation mouse embryo. The CB1-R mRNA expression was coincident with the activation of the embryonic genome late in the two-cell stage, whereas the CB2-R mRNA was present from the one-cell through the blastocyst stages. The major psychoactive component of marijuana (-)-delta-9-tetrahydrocannabinol [(-)-THC] inhibited forskolin-stimulated cAMP generation in the blastocyst, and this inhibition was prevented by pertussis toxin. However, the inactive cannabinoid cannabidiol (CBD) failed to influence this response. These results suggest that cannabinoid receptors in the embryo are coupled to inhibitory guanine nucleotide binding proteins. Further, the oviduct and uterus exhibited the enzymatic capacity to synthesize the putative endogenous cannabinoid ligand arachidonylethanolamide (anandamide). Synthetic and natural cannabinoid agonists [WIN 55,212-2, CP 55,940, (-)-THC, and anandamide], but not CBD or arachidonic acid, arrested the development of two-cell embryos primarily between the four-cell and eight-cell stages in vitro in a dose-dependent manner. Anandamide also interfered with the development of eight-cell embryos to blastocysts in culture. The autoradiographic studies readily detected binding of [3H]anandamide in embryos at all stages of development. Positive signals were present in one-cell embryos and all blastomeres of two-cell through four-cell embryos. However, most of the binding sites in eight-cell embryos and morulae were present in the outer cells. In the blastocyst, these signals were primarily localized in the mural trophectoderm with low levels of signals in the polar trophectoderm, while little or no signals were noted in inner cell mass cells.These results establish that the preimplantation mouse embryo is a target for cannabinoid ligands. Consequently, many of the adverse effects of cannabinoids observed during pregnancy could be mediated via these cannabinoid receptors. Although the physiological significance of the cannabinoid ligand-receptor signaling in normal preimplantation embryo development is not yet clear, the regulation of embryonic cAMP and/or Ca2+ levels via this signaling pathway may be important for normal embryonic development and/or implantation.
Resumo:
Combined treatment with allogeneic small lymphocytes or T-depleted small lymphocytes plus a blocking antibody to CD40 ligand (CD40L) permitted indefinite pancreatic islet allograft survival in 37 of 40 recipients that differed from islet donors at major and minor histocompatibility loci. The effect of the allogeneic small lymphocytes was donor antigen-specific. Neither treatment alone was as effective as combined treatment, although anti-CD40L by itself allowed indefinite islet allograft survival in 40% of recipients. Our interpretation is that small lymphocytes expressing donor antigens in the absence of appropriate costimulatory signals are tolerogenic for alloreactive host cells. Anti-CD40L antibody may prevent host T cells from inducing costimulatory signals in donor lymphocytes or islet grafts.
Resumo:
We explored the feasibility of designing retroviral vectors that can target human breast cancer cells with characteristic receptors via ligand-receptor interaction. The ecotropic Moloney murine leukemia virus envelope was modified by insertion of sequences encoding human heregulin. Ecotropic virus, which normally does not infect human cells, when pseudotyped with the modified envelope protein now crosses species to infect human breast cancer cell lines that overexpress HER-2 (human epidermal growth factor receptor; also called ERBB2) and HER-4 (also called ERBB4), while human breast cancer cell lines expressing low levels of these receptors remain resistant to infection. Since about 20% of human breast cancers overexpress HER-2 and some of breast cancer cell lines overexpress both HER-2 and HER-4, cell-specific targeting of retroviral vectors may provide a different approach for in vivo gene therapy of this type of breast cancer.
Resumo:
Binding of the lipid A portion of bacterial lipopolysaccharide (LPS) to leukocyte CD14 activates phagocytes and initiates the septic shock syndrome. Two lipid A analogs, lipid IVA and Rhodobacter sphaeroides lipid A (RSLA), have been described as LPS-receptor antagonists when tested with human phagocytes. In contrast, lipid IVA activated murine phagocytes, whereas RSLA was an LPS antagonist. Thus, these compounds displayed a species-specific pharmacology. To determine whether the species specificity of these LPS antagonists occurred as a result of interactions with CD14, the effects of lipid IVA and RSLA were examined by using human, mouse, and hamster cell lines transfected with murine or human CD14 cDNA expression vectors. These transfectants displayed sensitivities to lipid IVA and RSLA that reflected the sensitivities of macrophages of similar genotype (species) and were independent of the source of CD14 cDNA. For example, hamster macrophages and hamster fibroblasts transfected with either mouse or human-derived CD14 cDNA responded to lipid IVA and RSLA as LPS mimetics. Similarly, lipid IVA and RSLA acted as LPS antagonists in human phagocytes and human fibrosarcoma cells transfected with either mouse or human-derived CD14 cDNA. Therefore, the target of these LPS antagonists, which is encoded in the genomes of these cells, is distinct from CD14. Although the expression of CD14 is required for macrophage-like sensitivity to LPS, CD14 cannot discriminate between the lipid A moieties of these agents. We hypothesize that the target of the LPS antagonists is a lipid A recognition protein which functions as a signaling receptor that is triggered after interaction with CD14-bound LPS.
Resumo:
Ligand-activated epidermal growth factor receptors (EGFRs) associate with coated pit adaptor proteins (AP2) in vivo, implying a mechanism for receptor retention in coated pits during internalization. Using an in vitro binding assay, we localized the adaptor binding determinant to residues 970-991 of EGFRs and confirmed specificity by competition with a synthetic peptide corresponding to this sequence. A mutant EGFR lacking this AP2 binding determinant did not associate with AP2 in vivo but demonstrated internalization and down-regulation kinetics indistinguishable from its wild-type counterpart. Immunocytochemistry confirmed ligand-induced internalization of the mutant EGFR. These data suggest that endocytic determinants are distinct from AP2 binding determinants and that processes other than association with AP2 regulate endocytosis of EGFRs.