916 resultados para CRYSTALLINE CELLULOSE BREAKDOWN
Resumo:
Ground-state diffuse reflectance, time resolved laser-induced luminescence, diffuse reflectance laser flash-photolysis transient absorption and chromatographic techniques were used to elucidate the photodegradation processes of pyrene adsorbed onto microcrystalline cellulose and silica. Ground-state diffuse reflectance showed that on both substrates low concentrations display absorption of pyrene monomers. At high concentrations spectral changes attributed to aggregate formation were observed. Laser induced fluorescence showed that pyrene onto microcrystalline cellulose mainly presents fluorescence from monomers, while for silica, excimer-like emission was observed from low surface loadings (greater than or equal to 0.5 mumol g(-1)). Transient absorption and photodegradation studies were performed at concentrations where mainly monomers exist. On silica, pyrene presents transient absorption from its radical cation. On microcrystalline cellulose both radical cation, radical anion and pyrene triplet-triplet absorption were detected. Irradiation followed by chromatographic analysis showed that pyrene decomposes on both substrates. For pyrene on microcrystalline cellulose 1-hydroxypyrene was the main identified photoproduct since in the absence of oxygen further oxidation of 1-hydroxypyrene was very slow. For pyrene on silica photodegradation was very efficient. Almost no 1-hydroxypyrene was detected since in the presence of oxygen it is quickly oxidized to other photooxidation products. On both substrates, pyrene radical cation is the intermediate leading to photoproducts and oxygen it is not involved in its formation.
Resumo:
Diffuse reflectance and laser-induced techniques were used to study photochemical and photophysical processes of benzil adsorbed on two solid powdered supports, microcrystalline cellulose and beta-cyclodextrin. In both substrates, a distribution of ground-state benzil conformers exists, largely dominated by skew conformations where the carbonyl groups are twisted one to the other. Room temperature phosphorescence was observed in air-equilibrated samples in both cases. The decay times vary greatly and the largest lifetime was obtained for benzil/beta-cyclodextrin, showing that this host's cavity accommodates benzil well, enhancing its room temperature phosphorescence. Triplet - triplet absorption of benzil entrapped in cellulose was detected and benzil ketyl radical formation also occurred. With benzil included into beta-cyclodextrin, and following laser excitation, benzoyl radicals were detected on the millisecond timescale. Product analysis and identification of laser-irradiated benzil samples in the two hosts clearly showed that the main degradation photoproducts were benzoic acid and benzaldehyde. The main differences were a larger benzoic acid/benzaldehyde ratio in the case of cellulose and the formation of benzyl alcohol in this support.
Resumo:
The photochemistry of 4-chlorophenol (4-CP) was studied on silica and cellulose, using time-resolved diffuse reflectance techniques and product degradation analysis. The results have shown that the photochemistry of 4-CP depends on the support, on the concentration, and also on the sample preparation method. Transient absorption and photoproduct results can be understood by assuming the formation of the carbene 4-oxocyclohexa-2,5-dienylidene in both supports. On cellulose, at concentrations lower than 10 mumol g(-1), the carbene leads to the unsubstituted phenoxyl radical, and phenol is the main degradation product. At higher concentrations a new transient resulting from phenoxyl radicals coupling was also observed, and dihydroxybiphenyls are also formed. The reaction of the carbene with ground-state 4-CP was also detected through the formation of 5-chloro-2,4'-dihydroxybiphenyl. 4-Chlorophenoxyl radical and degradations products resulting from its coupling were also detected. Oxygen has little effect on the photochemistry of 4-CP on cellulose. On silica the transient benzoquinone O-oxide was formed in the presence of oxygen. Benzoquinone and hydroquinone are the main degradation products. In well-dried samples the formation of hydroquinone is reduced. At higher concentrations the same products as detected on cellulose were observed. 4-CP undergoes slow photochemical decomposition under solar radiation in both supports. The same main degradation products were observed in these conditions.
Resumo:
306 p.
Resumo:
Time-REsolved Laser Induced Breakdown Spectroscopy (TRELIBS) was used to determine the elemental concentration of barium in Texas Dome rock salt. TRELIBS allows for an efficient and in situ concentration analysis technique that detects a wide range of elements with no sample preparation. TRELIBS measurements were made in the 545nm to 594nm wavelength range. The proximity of a strong barium emission line (553.5481 nm) to the sodium doublet (588.9950 nm and 589.5924 nm) allowed for measurement within a single frame of the spectrograph. This barium emission line was compared to the sodium doublet for relative intensity. A homemade calibration sample containing known amounts of barium and sodium was used to determine the relative concentrations. By approximating the sodium content in the rock salt as 50%, we determined the absolute concentration of barium in the salt to be (0.13±0.03)%.
Resumo:
The objective of this research is to synthesize structural composites designed with particular areas defined with custom modulus, strength and toughness values in order to improve the overall mechanical behavior of the composite. Such composites are defined and referred to as 3D-designer composites. These composites will be formed from liquid crystalline polymers and carbon nanotubes. The fabrication process is a variation of rapid prototyping process, which is a layered, additive-manufacturing approach. Composites formed using this process can be custom designed by apt modeling methods for superior performance in advanced applications. The focus of this research is on enhancement of Young's modulus in order to make the final composite stiffer. Strength and toughness of the final composite with respect to various applications is also discussed. We have taken into consideration the mechanical properties of final composite at different fiber volume content as well as at different orientations and lengths of the fibers. The orientation of the LC monomers is supposed to be carried out using electric or magnetic fields. A computer program is modeled incorporating the Mori-Tanaka modeling scheme to generate the stiffness matrix of the final composite. The final properties are then deduced from the stiffness matrix using composite micromechanics. Eshelby's tensor, required to calculate the stiffness tensor using Mori-Tanaka method, is calculated using a numerical scheme that determines the components of the Eshelby's tensor (Gavazzi and Lagoudas 1990). The numerical integration is solved using Gaussian Quadrature scheme and is worked out using MATLAB as well. . MATLAB provides a good deal of commands and algorithms that can be used efficiently to elaborate the continuum of the formula to its extents. Graphs are plotted using different combinations of results and parameters involved in finding these results
Resumo:
The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for µXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for µXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for µXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.
Resumo:
The application of 3D grain-based modelling techniques is investigated in both small and large scale 3DEC models, in order to simulate brittle fracture processes in low-porosity crystalline rock. Mesh dependency in 3D grain-based models (GBMs) is examined through a number of cases to compare Voronoi and tetrahedral grain assemblages. Various methods are used in the generation of tessellations, each with a number of issues and advantages. A number of comparative UCS test simulations capture the distinct failure mechanisms, strength profiles, and progressive damage development using various Voronoi and tetrahedral GBMs. Relative calibration requirements are outlined to generate similar macro-strength and damage profiles for all the models. The results confirmed a number of inherent model behaviors that arise due to mesh dependency. In Voronoi models, inherent tensile failure mechanisms are produced by internal wedging and rotation of Voronoi grains. This results in a combined dependence on frictional and cohesive strength. In tetrahedral models, increased kinematic freedom of grains and an abundance of straight, connected failure pathways causes a preference for shear failure. This results in an inability to develop significant normal stresses causing cohesional strength dependence. In general, Voronoi models require high relative contact tensile strength values, with lower contact stiffness and contact cohesional strength compared to tetrahedral tessellations. Upscaling of 3D GBMs is investigated for both Voronoi and tetrahedral tessellations using a case study from the AECL’s Mine-by-Experiment at the Underground Research Laboratory. An upscaled tetrahedral model was able to reasonably simulate damage development in the roof forming a notch geometry by adjusting the cohesive strength. An upscaled Voronoi model underestimated the damage development in the roof and floor, and overestimated the damage in the side-walls. This was attributed to the discretization resolution limitations.
Resumo:
Cellulose is a biodegradable, renewable, non-meltable polymer which is insoluble in most solvents due to hydrogen bonding and crystallinity. Natural cellulose shows lower adsorption capacity as compared to modified cellulose and its capacity can be enhanced by modification usually by chemicals. This review focuses on the utilization of cellulose as an adsorbent in natural/modified form or as a precursor for activated carbon (AC) for adsorbing substances from water. The literature revealed that cellulose can be a promising precursor for production of activated carbon with appreciable surface area (∼1300 m2 g−1) and total pore volume (∼0.6 cm3 g−1) and the surface area and pore volume varies with the cellulose content. Finally, the purpose of review is to report a few controversies and unresolved questions concerning the preparation/properties of ACs from cellulose and to make aware to readers that there is still considerable scope for future development, characterization and utilization of ACs from cellulose.
Resumo:
Cellulose is a biodegradable, renewable, non-meltable polymer which is insoluble in most solvents due to hydrogen bonding and crystallinity. Natural cellulose shows lower adsorption capacity as compared to modified cellulose and its capacity can be enhanced by modification usually by chemicals. This review focuses on the utilization of cellulose as an adsorbent in natural/modified form or as a precursor for activated carbon (AC) for adsorbing substances from water. The literature revealed that cellulose can be a promising precursor for production of activated carbon with appreciable surface area ( 1300 m2 g 1) and total pore volume ( 0.6 cm3 g 1) and the surface area and pore volume varies with the cellulose content. Finally, the purpose of review is to report a few controversies and unresolved questions concerning the preparation/properties of ACs from cellulose and to make aware to readers that there is still considerable scope for future development, characterization and utilization of ACs from cellulose.
Resumo:
The aim of this work was in first place to define a methodology for the use of Py-GC/MS as a characterization technique for the organic compounds present in paper samples containing foxing stains, paper have a complex structure and mostly consist with cellulose fibers. Additionally, it was intent to characterize paper samples containing foxing stains with a batch of non-destructive analytical techniques. The work intent to deepen our knowledge on foxing stains, its chemical nature and morphological aspects. For characterization of the morphology of paper samples and foxing stains was used photography under different illuminations and optical microscopy. The presence of fibers disruption was observed with scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and also the nature of the fillers that is present in different areas. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used for identification of the sizing agents, determination of the chemical composition of additives that were used for production of paper, and comparison between foxing stains and unfoxed areas was allowed. Micro X-ray diffraction was used to evaluate the crystalline fillers in the sample. Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS was used for chemical analysis to identify the organic components and different classes of organic compounds; Resumo: O objetivo deste trabalho foi definir, em primeiro lugar, uma metodologia para o uso de Py-GC / MS como técnica de caracterização dos compostos orgânicos presentes em amostras de papel contendo manchas de foxing, o papel tem uma estrutura complexa e consiste principalmente com fibras de celulose. Além disso, pretendia caracterizar amostras de papel contendo manchas de raposas com técnicas analíticas não destrutivas. Para a caracterização da morfologia das amostras de papel e das manchas de foxing foi usada fotografia sob diferentes iluminações e microscopia óptica. A presença de fibras de ruptura foi observada por microscopia electrónica de varrimento juntamente com espectroscopia dispersiva de energia (EDS-SEM), assim como a natureza dos materiais de enchimento que está presente em diferentes áreas. Espectroscopia de infravermelho com transformada de Fourier em modo de reflexão total atenuada (ATR-FTIR) foi utilizada na identificação dos agentes de colagem, e na determinação da composição química de aditivos usados na produção de papel, e a comparação entre foxing manchas e áreas unfoxed foi deixada. Micro difracção de raios X foi usada para avaliar o enchimentos cristalinos na amostra. Cromatografia pirólise-gasosa / espectrometria de massa (Py-GC / MS) foi utilizada para análise química para identificar os componentes orgânicos e diferentes classes de compostos orgânicos.
Resumo:
2016
Resumo:
2016
Resumo:
The research project is focused on the investigation of the polymorphism of crystalline molecular material for organic semiconductor applications under non-ambient conditions, and the solid-state characterization and crystal structure determination of the different polymorphic forms. In particular, this research project has tackled the investigation and characterization of the polymorphism of perylene diimides (PDIs) derivatives at high temperatures and pressures, in particular N,N’-dialkyl-3,4,9,10-perylendiimide (PDI-Cn, with n = 5, 6, 7, 8). These molecules are characterized by excellent chemical, thermal, and photostability, high electron affinity, strong absorption in the visible region, low LUMO energies, good air stability, and good charge transport properties, which can be tuned via functionalization; these features make them promising n-type organic semiconductor materials for several applications such as OFETs, OPV cells, laser dye, sensors, bioimaging, etc. The thermal characterization of PDI-Cn was carried out by a combination of differential scanning calorimetry, variable temperature X-ray diffraction, hot-stage microscopy, and in the case of PDI-C5 also variable temperature Raman spectroscopy. Whereas crystal structure determination was carried out by both Single Crystal and Powder X-ray diffraction. Moreover, high-pressure polymorphism via pressure-dependent UV-Vis absorption spectroscopy and high-pressure Single Crystal X-ray diffraction was carried out in this project. A data-driven approach based on a combination of self-organizing maps (SOM) and principal component analysis (PCA) is also reported was used to classify different π-stacking arrangements of PDI derivatives into families of similar crystal packing. Besides the main project, in the framework of structure-property analysis under non-ambient conditions, the structural investigation of the water loss in Pt- and Pd- based vapochromic potassium/lithium salts upon temperature, and the investigation of structure-mechanical property relationships in polymorphs of a thienopyrrolyldione endcapped oligothiophene (C4-NT3N) are reported.
Resumo:
The purpose of my internship, carried out during my Erasmus period at the Complutense University of Madrid, was focused on the formulation of ionogels and hydrogels for the obtainment of films with high lignin content, and on their characterization measuring their antibacterial properties. For biomass formulation I used lignocellulosic biomass (Pinus Radiata) as raw material and ionic liquid as solvent. The two ionic liquids proposed were: 1-ethyl-3-methylimidazoliumdimethylphosphate [Emim][DMP] and 1-ethyl-3-methylimidazoliumdiethylphosphate [Emim][DEP]. The two-starting cellulose-rich solids were obtained from Pinus radiata wood that had been submitted to an organosolv process, to reduce its lignin content to fifteen (ORG15) and twenty per cent (ORG20). Having two ionic liquids and two solids available, the first phase of the project was devoted to the screening of both solids in both ionic liquids. Through this, it was possible to identify that only the [Emim][DMP] ionic liquid fulfils the purpose. It was also possible to discard the cellulose-rich solid ORG20 because its dissolution in the ionic liquid was not possible (after the time fixed) and, additionally, a Pinus radiata cellulose-rich solid bleached with hydrogen peroxide and containing ten per cent of lignin (ORG10B) was included in the screening. After screening, a total of five ionogels were subsequently formulated: two gels were formulated with the starting raw material ORG15 (with 1% and 1.75% cellulose, respectively) and three with ORG10B (with 1%, 1.75% and 3% cellulose, respectively). Five hydrogels were obtained from the ionogels. Rheological tests were performed on each ionogel and hydrogel. Finally, films were formulated from hydrogels and they were analysed by antibacterial testing to see if they could be applied as food packaging. In addition, antioxidant and properties such as opacity and transparency were also studied.