930 resultados para CONFORMAL-INVARIANCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review a formalism of superstring quantization with manifest six-dimensional spacetime supersymmetry, and apply it to AdS3 × S3 backgrounds with Ramond-Ramond flux. The resulting description is a conformal field theory based on a sigma model whose target space is a certain supergroup SU′(2|2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonperturbative functions that parametrize off-diagonal hadronic matrix elements of the light-cone leading-twist quark operators are considered. These functions are calculated within the proposed relativistic quark model allowing for the nontrivial structure of the QCD vacuum, special attention being given to gauge invariance. Hadrons are treated as bound states of quarks; strong-interaction quark-pion vertices are described by effective interaction Lagrangians generated by instantons. The parameters of the instanton vacuum, such as the effective radius of the instanton and the quark mass, are related to the vacuum expectation values of the quark-gluon operators of the lowest dimension and to low-energy pion observables. © 2000 MAIK Nauka/Interperiodica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The leading-twist pion-distribution amplitude is obtained at a low normalization scale of order ρc (inverse average size of an instanton). Pion dynamics, consistent with gauge invariance and low-energy theorems, is considered within the instanton vacuum model. The results are QCD-evolved to higher momentum-transfer values and are in agreement with recent data from CLEO on the pion transition form factor. It is also shown that some previous calculations violate the axial Ward-Takahashi identity. © 2001 MAIK Nauka/Interperiodica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general form for ladder operators is used to construct a method to solve bound-state Schrödinger equations. The characteristics of supersymmetry and shape invariance of the system are the start point of the approach. To show the elegance and the utility of the method we use it to obtain energy spectra and eigenfunctions for the one-dimensional harmonic oscillator and Morse potentials and for the radial harmonic oscillator and Coulomb potentials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soliton spectrum (massive and massless) of a family of integrable models with local U(1) and U(1) ⊗U(1) symmetries is studied. These models represent relevant integrable deformations of SL(2,ℝ) ⊗U(1) n-1-WZW and SL(2,ℝ) ⊗ SL(2,ℝ) ⊗U(1) n-2-WZW models. Their massless solitons appear as specific topological solutions of the U(1)(or U(1) ⊗ U(1)-) CFTs. The nonconformal analog of the GKO-coset formula is derived and used in the construction of the composite massive solitons of the ungauged integrable models. © SISSA/ISAS 2002.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By replacing ten-dimensional pure spinors with eleven-dimensional pure spinors, the formalism recently developed for covariantly quantizing the d = 10 superparticle and superstring is extended to the d = 11 superparticle and supermembrane. In this formalism, kappa symmetry is replaced by a BRST-like invariance using the nilpotent operator Q = ∮ λ αdα where dα is the worldvolume variable corresponding to the d = 11 spacetime supersymmetric derivative and λα is an SO(10, 1) pure spinor variable satisfying λΓcλ = 0 for c = 1 to 11. Super-Poincaré covariant unintegrated and integrated supermembrane vertex operators are explicitly constructed which are in the cohomology of Q. After double-dimensional reduction of the eleventh dimension, these vertex operators are related to type-IIA superstring vertex operators where Q = QL + QR is the sum of the left and right-moving type-IIA BRST operators and the eleventh component of the pure spinor constraint, λΓ 11λ = 0, replaces the bL 0 - b R 0 constraint of the closed superstring. A conjecture is made for the computation of M-theory scattering amplitudes using these supermembrane vertex operators. © SISSA/ISAS 2002.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the U(4) hybrid formalism, manifestly N = (2,2) worldsheet supersymmetric sigma models are constructed for the type-IIB superstring in Ramond-Ramond backgrounds. The Kahler potential in these N = 2 sigma models depends on four chiral and antichiral bosonic superfields and two chiral and antichiral fermionic superfields. When the Kahler potential is quadratic, the model is a free conformal field theory which describes a flat ten-dimensional target space with Ramond-Ramond flux and non-constant dilaton. For more general Kahler potentials, the model describes curved target spaces with Ramond-Ramond flux that are not plane-wave backgrounds. Ricci-flatness of the Kahler metric implies the on-shell conditions for the background up to the usual four-loop conformal anomaly. © SISSA/ISAS 2002.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical BRST invariance in the pure spinor formalism for the open superstring is shown to imply the supersymmetric Born-Infeld equations of motion for the background fields. These equations are obtained by requiring that the left and right-moving BRST currents are equal on the worldsheet boundary in the presence of the background. The Born-Infeld equations are expressed in N = 1 D = 10 superspace and include all abelian contributions to the low-energy equations of motion, as well as the leading non-abelian contributions. © SISSA/ISAS 2003.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a model for dynamical localization of topology using ideas from non-commutative geometry and topology in quantum mechanics. We consider a collection X of N one-dimensional manifolds and the corresponding set of boundary conditions (self-adjoint extensions) of the Dirac operator D. The set of boundary conditions encodes the topology and is parameterized by unitary matrices g. A particular geometry is described by a spectral triple x(g) = (A X, script H sign X, D(g)). We define a partition function for the sum over all g. In this model topology fluctuates but the dimension is kept fixed. We use the spectral principle to obtain an action for the set of boundary conditions. Together with invariance principles the procedure fixes the partition function for fluctuating topologies. The model has one free-parameter β and it is equivalent to a one plaquette gauge theory. We argue that topology becomes localized at β = ∞ for any value of N. Moreover, the system undergoes a third-order phase transition at β = 1 for large-N. We give a topological interpretation of the phase transition by looking how it affects the topology. © SISSA/ISAS 2004.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hughston has shown that projective pure spinors can be used to construct massless solutions in higher dimensions, generalizing the four-dimensional twistor transform of Penrose. In any even (euclidean) dimension d = 2n, projective pure spinors parameterize the coset space SO(2n)/U(n), which is the space of all complex structures on ℝ2n. For d = 4 and d = 6, these spaces are ℂℙ1 and ℂℙ3 and the appropriate twistor transforms can easily be constructed. In this paper, we show how to construct the twistor transform for d > 6 when the pure spinor satisfies nonlinear constraints, and present explicit formulas for solutions of the massless field equations. © SISSA/ISAS 2005.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a field theory with target space being the two dimensional sphere S2 and defined on the space-time S3 × . The Lagrangean is the square of the pull-back of the area form on S2. It is invariant under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group. © SISSA 2006.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the running of the QCD coupling with the momentum squared (Q 2) and the temperature scales in the high temperature limit (T > Tc), using a mass dependent renormalization scheme to build the Renormalization Group Equations. The approach used guaranty gauge invariance, through the use of the Hard Thermal Loop approximation, and independence of the vertex chosen to renormalize the coupling. In general, the dependence of the coupling with the temperature is not logarithmical, although in the region Q2 ∼ T2 the logarithm approximation is reasonable. Finally, as known from Debye screening, color charge is screened in the coupling. The number of flavors, however, is anti-screened.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the necessary conditions for obtaining infrared finite solutions from the Schwinger-Dyson equation governing the dynamics of the gluon propagator. The equation in question is set up in the Feynman gauge of the background field method, thus capturing a number of desirable features. Most notably, and in contradistinction to the standard formulation, the gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. Various subtle field-theoretic issues, such as renormalization group invariance and regularization of quadratic divergences, are briefly addressed. The infrared and ultraviolet properties of the obtained solutions are examined in detail, and the allowed range for the effective gluon mass is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents two Variable Structure Controllers (VSC) for continuous-time switched plants. It is assumed that the state vector is available for feedback. The proposed control system provides a switching rule and also the variable structure control input. The design is based on Lyapunov-Metzler (LM) inequalities and also on Strictly Positive Real (SPR) systems stability results. The definition of Lyapunov-Metzler-SPR (LMS) systems and its direct application in the design of VSC for switched systems are introduced in this paper. Two examples illustrate the design of the proposed VSC, considering a plant given by a switched system with a switched-state control law and two linear time-invariant systems, that are not controllable and also can not be stabilized with state feedback. ©2008 IEEE.