901 resultados para COMPUTER NETWORKS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to design a preventive scheme using directional antennas to improve the performance of mobile ad hoc networks. In this dissertation, a novel Directionality based Preventive Link Maintenance (DPLM) Scheme is proposed to characterize the performance gain [JaY06a, JaY06b, JCY06] by extending the life of link. In order to maintain the link and take preventive action, signal strength of data packets is measured. Moreover, location information or angle of arrival information is collected during communication and saved in the table. When measured signal strength is below orientation threshold , an orientation warning is generated towards the previous hop node. Once orientation warning is received by previous hop (adjacent) node, it verifies the correctness of orientation warning with few hello pings and initiates high quality directional link (a link above the threshold) and immediately switches to it, avoiding a link break altogether. The location information is utilized to create a directional link by orienting neighboring nodes antennas towards each other. We call this operation an orientation handoff, which is similar to soft-handoff in cellular networks. ^ Signal strength is the indicating factor, which represents the health of the link and helps to predict the link failure. In other words, link breakage happens due to node movement and subsequently reducing signal strength of receiving packets. DPLM scheme helps ad hoc networks to avoid or postpone costly operation of route rediscovery in on-demand routing protocols by taking above-mentioned preventive action. ^ This dissertation advocates close but simple collaboration between the routing, medium access control and physical layers. In order to extend the link, the Dynamic Source Routing (DSR) and IEEE 802.11 MAC protocols were modified to use the ability of directional antennas to transmit over longer distance. A directional antenna module is implemented in OPNET simulator with two separate modes of operations: omnidirectional and directional. The antenna module has been incorporated in wireless node model and simulations are performed to characterize the performance improvement of mobile ad hoc networks. Extensive simulations have shown that without affecting the behavior of the routing protocol noticeably, aggregate throughput, packet delivery ratio, end-to-end delay (latency), routing overhead, number of data packets dropped, and number of path breaks are improved considerably. We have done the analysis of the results in different scenarios to evaluate that the use of directional antennas with proposed DPLM scheme has been found promising to improve the performance of mobile ad hoc networks. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation established a state-of-the-art programming tool for designing and training artificial neural networks (ANNs) and showed its applicability to brain research. The developed tool, called NeuralStudio, allows users without programming skills to conduct studies based on ANNs in a powerful and very user friendly interface. A series of unique features has been implemented in NeuralStudio, such as ROC analysis, cross-validation, network averaging, topology optimization, and optimization of the activation function’s slopes. It also included a Support Vector Machines module for comparison purposes. Once the tool was fully developed, it was applied to two studies in brain research. In the first study, the goal was to create and train an ANN to detect epileptic seizures from subdural EEG. This analysis involved extracting features from the spectral power in the gamma frequencies. In the second application, a unique method was devised to link EEG recordings to epileptic and nonepileptic subjects. The contribution of this method consisted of developing a descriptor matrix that can be used to represent any EEG file regarding its duration and the number of electrodes. The first study showed that the inter-electrode mean of the spectral power in the gamma frequencies and its duration above a specific threshold performs better than the other frequencies in seizure detection, exhibiting an accuracy of 95.90%, a sensitivity of 92.59%, and a specificity of 96.84%. The second study yielded that Hjorth’s parameter activity is sufficient to accurately relate EEG to epileptic and non-epileptic subjects. After testing, accuracy, sensitivity and specificity of the classifier were all above 0.9667. Statistical tests measured the superiority of activity at over 99.99 % certainty. It was demonstrated that (1) the spectral power in the gamma frequencies is highly effective in locating seizures from EEG and (2) activity can be used to link EEG recordings to epileptic and non-epileptic subjects. These two studies required high computational load and could be addressed thanks to NeuralStudio. From a medical perspective, both methods proved the merits of NeuralStudio in brain research applications. For its outstanding features, NeuralStudio has been recently awarded a patent (US patent No. 7502763).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research involves the design, development, and theoretical demonstration of models resulting in integrated misbehavior resolution protocols for ad hoc networked devices. Game theory was used to analyze strategic interaction among independent devices with conflicting interests. Packet forwarding at the routing layer of autonomous ad hoc networks was investigated. Unlike existing reputation based or payment schemes, this model is based on repeated interactions. To enforce cooperation, a community enforcement mechanism was used, whereby selfish nodes that drop packets were punished not only by the victim, but also by all nodes in the network. Then, a stochastic packet forwarding game strategy was introduced. Our solution relaxed the uniform traffic demand that was pervasive in other works. To address the concerns of imperfect private monitoring in resource aware ad hoc networks, a belief-free equilibrium scheme was developed that reduces the impact of noise in cooperation. This scheme also eliminated the need to infer the private history of other nodes. Moreover, it simplified the computation of an optimal strategy. The belief-free approach reduced the node overhead and was easily tractable. Hence it made the system operation feasible. Motivated by the versatile nature of evolutionary game theory, the assumption of a rational node is relaxed, leading to the development of a framework for mitigating routing selfishness and misbehavior in Multi hop networks. This is accomplished by setting nodes to play a fixed strategy rather than independently choosing a rational strategy. A range of simulations was carried out that showed improved cooperation between selfish nodes when compared to older results. Cooperation among ad hoc nodes can also protect a network from malicious attacks. In the absence of a central trusted entity, many security mechanisms and privacy protections require cooperation among ad hoc nodes to protect a network from malicious attacks. Therefore, using game theory and evolutionary game theory, a mathematical framework has been developed that explores trust mechanisms to achieve security in the network. This framework is one of the first steps towards the synthesis of an integrated solution that demonstrates that security solely depends on the initial trust level that nodes have for each other.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation introduces the design of a multimodal, adaptive real-time assistive system as an alternate human computer interface that can be used by individuals with severe motor disabilities. The proposed design is based on the integration of a remote eye-gaze tracking system, voice recognition software, and a virtual keyboard. The methodology relies on a user profile that customizes eye gaze tracking using neural networks. The user profiling feature facilitates the notion of universal access to computing resources for a wide range of applications such as web browsing, email, word processing and editing. ^ The study is significant in terms of the integration of key algorithms to yield an adaptable and multimodal interface. The contributions of this dissertation stem from the following accomplishments: (a) establishment of the data transport mechanism between the eye-gaze system and the host computer yielding to a significantly low failure rate of 0.9%; (b) accurate translation of eye data into cursor movement through congregate steps which conclude with calibrated cursor coordinates using an improved conversion function; resulting in an average reduction of 70% of the disparity between the point of gaze and the actual position of the mouse cursor, compared with initial findings; (c) use of both a moving average and a trained neural network in order to minimize the jitter of the mouse cursor, which yield an average jittering reduction of 35%; (d) introduction of a new mathematical methodology to measure the degree of jittering of the mouse trajectory; (e) embedding an onscreen keyboard to facilitate text entry, and a graphical interface that is used to generate user profiles for system adaptability. ^ The adaptability nature of the interface is achieved through the establishment of user profiles, which may contain the jittering and voice characteristics of a particular user as well as a customized list of the most commonly used words ordered according to the user's preferences: in alphabetical or statistical order. This allows the system to successfully provide the capability of interacting with a computer. Every time any of the sub-system is retrained, the accuracy of the interface response improves even more. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A heterogeneous wireless network is characterized by the presence of different wireless access technologies that coexist in an overlay fashion. These wireless access technologies usually differ in terms of their operating parameters. On the other hand, Mobile Stations (MSs) in a heterogeneous wireless network are equipped with multiple interfaces to access different types of services from these wireless access technologies. The ultimate goal of these heterogeneous wireless networks is to provide global connectivity with efficient ubiquitous computing to these MSs based on the Always Best Connected (ABC) principle. This is where the need for intelligent and efficient Vertical Handoffs (VHOs) between wireless technologies in a heterogeneous environment becomes apparent. This paper presents the design and implementation of a fuzzy multicriteria based Vertical Handoff Necessity Estimation (VHONE) scheme that determines the proper time for VHO, while considering the continuity and quality of the currently utilized service, and the end-users' satisfaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hardware/software (HW/SW) cosimulation integrates software simulation and hardware simulation simultaneously. Usually, HW/SW co-simulation platform is used to ease debugging and verification for very large-scale integration (VLSI) design. To accelerate the computation of the gesture recognition technique, an HW/SW implementation using field programmable gate array (FPGA) technology is presented in this paper. The major contributions of this work are: (1) a novel design of memory controller in the Verilog Hardware Description Language (Verilog HDL) to reduce memory consumption and load on the processor. (2) The testing part of the neural network algorithm is being hardwired to improve the speed and performance. The American Sign Language gesture recognition is chosen to verify the performance of the approach. Several experiments were carried out on four databases of the gestures (alphabet signs A to Z). (3) The major benefit of this design is that it takes only few milliseconds to recognize the hand gesture which makes it computationally more efficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a heterogeneous network composed of femtocells deployed within a macrocell network is considered, and a quality-of-service (QoS)-oriented fairness metric which captures important characteristics of tiered network architectures is proposed. Using homogeneous Poisson processes, the sum capacities in such networks are expressed in closed form for co-channel, dedicated channel, and hybrid resource allocation methods. Then a resource splitting strategy that simultaneously considers capacity maximization, fairness constraints, and QoS constraints is proposed. Detailed computer simulations utilizing 3GPP simulation assumptions show that a hybrid allocation strategy with a well-designed resource split ratio enjoys the best cell-edge user performance, with minimal degradation in the sum throughput of macrocell users when compared with that of co-channel operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with finding the maximum number of security policies without conflicts. By doing so we can remove security loophole that causes security violation. We present the problem of maximum compatible security policy and its relationship to the problem of maximum acyclic subgraph, which is proved to be NP-hard. Then we present a polynomial-time approximation algorithm and show that our result has approximation ratio for any integer with complexity .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as ƒ-test is performed during each node's split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis was to develop an efficient routing protocol which would provide mobility support to the mobile devices roaming within a network. The routing protocol need to be compatible with the existing internet architecture. The routing protocol proposed here is based on the Mobile IP routing protocol and could solve some of the problems existing in current Mobile IP implementation e.g. ingress filtering problem. By implementing an efficient timeout mechanism and introducing Paging mechanism to the wireless network, the protocol minimizes the number of control messages sent over the network. The implementation of the system is primarily done on three components: 1) Mobile devices that need to gain access to the network, 2) Router which would be providing roaming support to the mobile devices and 3) Database server providing basic authentication services on the system. As a result, an efficient IP routing protocol is developed which would provide seamless mobility to the mobile devices on the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ellipsometry is a well known optical technique used for the characterization of reflective surfaces in study and films between two media. It is based on measuring the change in the state of polarization that occurs as a beam of polarized light is reflected from or transmitted through the film. Measuring this change can be used to calculate parameters of a single layer film such as the thickness and the refractive index. However, extracting these parameters of interest requires significant numerical processing due to the noninvertible equations. Typically, this is done using least squares solving methods which are slow and adversely affected by local minima in the solvable surface. This thesis describes the development and implementation of a new technique using only Artificial Neural Networks (ANN) to calculate thin film parameters. The new method offers a speed in the orders of magnitude faster than preceding methods and convergence to local minima is completely eliminated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the development of information technology, the theory and methodology of complex network has been introduced to the language research, which transforms the system of language in a complex networks composed of nodes and edges for the quantitative analysis about the language structure. The development of dependency grammar provides theoretical support for the construction of a treebank corpus, making possible a statistic analysis of complex networks. This paper introduces the theory and methodology of the complex network and builds dependency syntactic networks based on the treebank of speeches from the EEE-4 oral test. According to the analysis of the overall characteristics of the networks, including the number of edges, the number of the nodes, the average degree, the average path length, the network centrality and the degree distribution, it aims to find in the networks potential difference and similarity between various grades of speaking performance. Through clustering analysis, this research intends to prove the network parameters’ discriminating feature and provide potential reference for scoring speaking performance.