979 resultados para COLD DARK-MATTER
Resumo:
New stars form in dense interstellar clouds of gas and dust called molecular clouds. The actual sites where the process of star formation takes place are the dense clumps and cores deeply embedded in molecular clouds. The details of the star formation process are complex and not completely understood. Thus, determining the physical and chemical properties of molecular cloud cores is necessary for a better understanding of how stars are formed. Some of the main features of the origin of low-mass stars, like the Sun, are already relatively well-known, though many details of the process are still under debate. The mechanism through which high-mass stars form, on the other hand, is poorly understood. Although it is likely that the formation of high-mass stars shares many properties similar to those of low-mass stars, the very first steps of the evolutionary sequence are unclear. Observational studies of star formation are carried out particularly at infrared, submillimetre, millimetre, and radio wavelengths. Much of our knowledge about the early stages of star formation in our Milky Way galaxy is obtained through molecular spectral line and dust continuum observations. The continuum emission of cold dust is one of the best tracers of the column density of molecular hydrogen, the main constituent of molecular clouds. Consequently, dust continuum observations provide a powerful tool to map large portions across molecular clouds, and to identify the dense star-forming sites within them. Molecular line observations, on the other hand, provide information on the gas kinematics and temperature. Together, these two observational tools provide an efficient way to study the dense interstellar gas and the associated dust that form new stars. The properties of highly obscured young stars can be further examined through radio continuum observations at centimetre wavelengths. For example, radio continuum emission carries useful information on conditions in the protostar+disk interaction region where protostellar jets are launched. In this PhD thesis, we study the physical and chemical properties of dense clumps and cores in both low- and high-mass star-forming regions. The sources are mainly studied in a statistical sense, but also in more detail. In this way, we are able to examine the general characteristics of the early stages of star formation, cloud properties on large scales (such as fragmentation), and some of the initial conditions of the collapse process that leads to the formation of a star. The studies presented in this thesis are mainly based on molecular line and dust continuum observations. These are combined with archival observations at infrared wavelengths in order to study the protostellar content of the cloud cores. In addition, centimetre radio continuum emission from young stellar objects (YSOs; i.e., protostars and pre-main sequence stars) is studied in this thesis to determine their evolutionary stages. The main results of this thesis are as follows: i) filamentary and sheet-like molecular cloud structures, such as infrared dark clouds (IRDCs), are likely to be caused by supersonic turbulence but their fragmentation at the scale of cores could be due to gravo-thermal instability; ii) the core evolution in the Orion B9 star-forming region appears to be dynamic and the role played by slow ambipolar diffusion in the formation and collapse of the cores may not be significant; iii) the study of the R CrA star-forming region suggests that the centimetre radio emission properties of a YSO are likely to change with its evolutionary stage; iv) the IRDC G304.74+01.32 contains candidate high-mass starless cores which may represent the very first steps of high-mass star and star cluster formation; v) SiO outflow signatures are seen in several high-mass star-forming regions which suggest that high-mass stars form in a similar way as their low-mass counterparts, i.e., via disk accretion. The results presented in this thesis provide constraints on the initial conditions and early stages of both low- and high-mass star formation. In particular, this thesis presents several observational results on the early stages of clustered star formation, which is the dominant mode of star formation in our Galaxy.
Resumo:
This thesis contains three subject areas concerning particulate matter in urban area air quality: 1) Analysis of the measured concentrations of particulate matter mass concentrations in the Helsinki Metropolitan Area (HMA) in different locations in relation to traffic sources, and at different times of year and day. 2) The evolution of traffic exhaust originated particulate matter number concentrations and sizes in local street scale are studied by a combination of a dispersion model and an aerosol process model. 3) Some situations of high particulate matter concentrations are analysed with regard to their meteorological origins, especially temperature inversion situations, in the HMA and three other European cities. The prediction of the occurrence of meteorological conditions conducive to elevated particulate matter concentrations in the studied cities is examined. The performance of current numerical weather forecasting models in the case of air pollution episode situations is considered. The study of the ambient measurements revealed clear diurnal variation of the PM10 concentrations in the HMA measurement sites, irrespective of the year and the season of the year. The diurnal variation of local vehicular traffic flows seemed to have no substantial correlation with the PM2.5 concentrations, indicating that the PM10 concentrations were originated mainly from local vehicular traffic (direct emissions and suspension), while the PM2.5 concentrations were mostly of regionally and long-range transported origin. The modelling study of traffic exhaust dispersion and transformation showed that the number concentrations of particles originating from street traffic exhaust undergo a substantial change during the first tens of seconds after being emitted from the vehicle tailpipe. The dilution process was shown to dominate total number concentrations. Minimal effect of both condensation and coagulation was seen in the Aitken mode number concentrations. The included air pollution episodes were chosen on the basis of occurrence in either winter or spring, and having at least partly local origin. In the HMA, air pollution episodes were shown to be linked to predominantly stable atmospheric conditions with high atmospheric pressure and low wind speeds in conjunction with relatively low ambient temperatures. For the other European cities studied, the best meteorological predictors for the elevated concentrations of PM10 were shown to be temporal (hourly) evolutions of temperature inversions, stable atmospheric stability and in some cases, wind speed. Concerning the weather prediction during particulate matter related air pollution episodes, the use of the studied models were found to overpredict pollutant dispersion, leading to underprediction of pollutant concentration levels.
Resumo:
The electroweak theory is the part of the standard model of particle physics that describes the weak and electromagnetic interactions between elementary particles. Since its formulation almost 40 years ago, it has been experimentally verified to a high accuracy and today it has a status as one of the cornerstones of particle physics. Thermodynamics of electroweak physics has been studied ever since the theory was written down and the features the theory exhibits at extreme conditions remain an interesting research topic even today. In this thesis, we consider some aspects of electroweak thermodynamics. Specifically, we compute the pressure of the standard model to high precision and study the structure of the electroweak phase diagram when finite chemical potentials for all the conserved particle numbers in the theory are introduced. In the first part of the thesis, the theory, methods and essential results from the computations are introduced. The original research publications are reprinted at the end.
Resumo:
Student participation in the classroom has long been regarded as an important means of increasing student engagement and enhancing learning outcomes by promoting active learning. However, the approach to class participation common in U.S. law schools, commonly referred to as the Socratic method, has been criticised for its negative impacts on student wellbeing. A multiplicity of American studies have identified that participating in law class discussions can be alienating, intimidating and stressful for some law students, and may be especially so for women, and students from minority backgrounds. Using data from the Law School Student Assessment Survey (LSSAS), conducted at UNSW Law School in 2012, this Chapter provides preliminary insights into whether assessable class participation (ACP) at an Australian law school is similarly alienating and stressful for students, including the groups identified in the American literature. In addition, we compare the responses of undergraduate Bachelor of Laws (LLB) and graduate Juris Doctor (JD) students. The LSSAS findings indicate that most respondents recognise the potential learning and social benefits associated with class participation in legal education, but remain divided over their willingness to participate. Further, in alignment with general trends identified in American studies, LLB students, women, international students, and non-native English speakers perceive they contribute less frequently to class discussions than JD students, males, domestic students, and native English speakers, respectively. Importantly, the LSSAS indicates students are more likely to be anxious about contributing to class discussions if they are LLB students (compared to their JD counterparts), and if English is not their first language (compared to native English speakers). There were no significant differences in students’ self-reported anxiety levels based on gender, which diverges from the findings of American research.
Resumo:
When heated to high temperatures, the behavior of matter changes dramatically. The standard model fields go through phase transitions, where the strongly interacting quarks and gluons are liberated from their confinement to hadrons, and the Higgs field condensate melts, restoring the electroweak symmetry. The theoretical framework for describing matter at these extreme conditions is thermal field theory, combining relativistic field theory and quantum statistical mechanics. For static observables the physics is simplified at very high temperatures, and an effective three-dimensional theory can be used instead of the full four-dimensional one via a method called dimensional reduction. In this thesis dimensional reduction is applied to two distinct problems, the pressure of electroweak theory and the screening masses of mesonic operators in quantum chromodynamics (QCD). The introductory part contains a brief review of finite-temperature field theory, dimensional reduction and the central results, while the details of the computations are contained in the original research papers. The electroweak pressure is shown to converge well to a value slightly below the ideal gas result, whereas the pressure of the full standard model is dominated by the QCD pressure with worse convergence properties. For the mesonic screening masses a small positive perturbative correction is found, and the interpretation of dimensional reduction on the fermionic sector is discussed.
Resumo:
1. Accumulation of ubiquinone in the livers of rats exposed to a cold environment was shown to be due to both decreased catabolism during the entire experimental period and increased synthesis during an intermediate stage (10–20 days). 2. The increased endogenous synthesis in the cold-exposed rats was eliminated when ubiquinone accumulated in the liver after exposure for 40 days (coinciding with cclimatization), or by absorption of the exogenous dietary supply, possibly by the mechanism of end-product regulation.
Resumo:
Ion transport in a recently demonstrated promising soft matter solid plastic-polymer electrolyte is discussed here in the context of solvent dynamics and ion association. The plastic-polymer composite electrolytes display liquid-like ionic conductivity in the solid state,compliable mechanical strength (similar to 1 MPa), and wide electrochemical voltage stability (>= 5 V). Polyacrylonitrile (PAN) dispersed in lithium perchlorate (LiClO4)-succinonitrile (SN) was chosen as the model system for the study (abbreviated LiClO4-SN:PAN). Systematic observation of various mid-infrared isomer and ion association bands as a function of temperature and polyme concentration shows an effective increase in trans conformer concentration along with free Li+ ion concentration. This strongly supports the view that enhancement in LiClO4-SN:PAN ionic conductivity over the neat plastic electrolyte (LiClO4-SN) is due to both increase in charge mobility and concentration. The ionic conductivity and infrared spectroscopy studies are supported by Brillouin light scattering. For the LiClO4-SN:PAN composites, a peak at 17 GHz was observed in addition to the normal trans-gauche isomerism (as in neat SN) at 12 GHz. The fast process is attributed to increased dynamics of those SN molecules whose energy barrier of transition from gauche to trans has reduced under influences induced by the changes in temperature and polymer concentration. The observations from ionic conductivity, spectroscopy, and light scattering studies were further supplemented by temperature dependent nuclear magnetic resonance H-1 and Li-7 line width measurements.
Resumo:
Havupuiden erikoismuotoja on käytetty koristekasveina jo vuosisatoja ympäri maailmaa. Niitä on lisätty pääsääntöisesti pistokkaista ja varttamalla. Suomessa kotimaisten metsäpuidemme erikois-muotoja on kartoitettu ja kerätty kokoelmiin järjestelmällisemmin 1960-luvulta alkaen. Taimisto-viljelijät, puutarhasuunnittelijat ja kotipuutarhurit ovat olleet enenevässä määrin kiinnostuneita näistä kotimaisista kestävistä havukasveista. Yli 90 prosenttia markkinoillamme olevista havukas-veista tuodaan ulkomailta, joten on selvää, että niiden talvenkestävyydessä on ongelmia. Tämän tutkimuksen tavoitteena oli selvittää kotimaisille erikoismuodoille sopivia lisäysmene-telmiä ja siten edistää kotimaisen havukasvituotannon mahdollisuuksia. Aineistona kokeissa oli kotimaisia erikoismuotoja metsäkuusesta (Picea abies (L.) Karsten) ja kotikatajasta (Juniperus communis L.), tavallisia metsäkuusia sekä kahdeksan ulkomaista havupuutaksonia. Lisäysmene-telmistä tutkittiin varttamista ja pistokaslisäystä ja kokeet suoritettiin Metsäntutkimuslaitoksen toimipaikoissa Lopen Haapastensyrjässä sekä Punkaharjulla. Varttamiskokeessa vertailtiin koti-maisen kuusen erikoismuotokloonien varttamisen onnistumista. Pistokaskokeissa tutkittiin geno-tyypin, emopuun iän, pistokasoksan sijainnin sekä hormonikäsittelyn vaikutusta havukasvien pis-tokkaiden juurtumiseen. Tavalliset metsäkuuset toimivat kontrolleina. Tutkimus osoitti, että varttaminen onnistui erinomaisesti kaikilla erikoismuotoklooneilla. Ovat-ko vartteet esteettisesti katsottuna koristekäyttöön sopivia, jää vielä seurattavaksi. Pistokaskokeis-sa havaittiin, että juveniilisuus vaikutti pistokkaiden juurtumiseen, mutta iäkkäistäkin puista lisää-minen onnistuu, kunhan genotyyppi on sopiva. Keskimäärin alaoksat juurtuivat paremmin kuin latvuksen yläosista otetut pistokasoksat, mutta vain yhdellä kloonilla ero oli tilastollisesti merkit-sevä. Hormonikäsittely heikensi selvästi kotimaisen kuusen ja katajan pistokkaiden juurtumista, mutta ulkomaisiin havupuulajeihin käsittelyllä ei ollut vaikutusta. Kotimaisen havukasvituotannon pohjaksi pitäisi tehdä kloonivalintaa, jossa koristearvon lisäksi otettaisiin huomioon myös kloonin lisättävyys. Taimien tuottaminen pistokkaista on selvästi edul-lisempaa kuin vartteiden tuottaminen, joskin varte kasvaa myyntikuntoon nopeammin kuin pisto-kastaimi. Pistokastaimi on kuitenkin omajuurinen ja stabiilimpi kasvutavaltaan kuin varte. Tämä korostuu etenkin kääpiömuotoja tuotettaessa.
Resumo:
We construct dark soliton solutions in a holographic model of a relativistic superfluid. We study the length scales associated with the condensate and the charge density depletion, and find that the two scales differ by a non-trivial function of the chemical potential. By adjusting the chemical potential, we study the variation of the depletion of charge density at the interface.
Resumo:
In order to study the elastic behaviour of matter when subjected to very large pressures, such as occur for example in the interior of the earth, and to provide an explanation for phenomena like earthquakes, it is essential to be able to calculate the values of the elastic constants of a substance under a state of large initial stress in terms of the elastic constants of a natural or stress-free state. An attempt has been made in this paper to derive expressions for these quantities for a substance of cubic symmetry on the basis of non-linear theory of elasticity and including up to cubic powers of the strain components in the strain energy function. A simple method of deriving them directly from the energy function itself has been indicated for any general case and the same has been applied to the case of hydrostatic compression. The notion of an effective elastic energy-the energy require to effect an infinitesimal deformation over a state of finite strain-has been introduced, the coefficients in this expression being the effective elastic constants. A separation of this effective energy function into normal co-ordinates has been given for the particular case of cubic symmetry and it has been pointed out, that when any of such coefficients in this normal form becomes negative, elastic instability will set in, with associated release of energy.
Resumo:
Tiivistelmä: Suomen jokivesien Itämereen kuljettama fosfori ja orgaaninen aine
Resumo:
We present a method to perform in situ microrheological measurements on monolayers of soft materials undergoing viscoelastic transitions under compression. Using the combination of a Langmuir trough mounted on the inverted microscope stage of a laser scanning confocal microscope we track the motion of individual fluorescent quantum dots partly dispersed in monolayers spread at the air-water interface. From the calculated mean square displacement of the probe particles and extending a well established scheme of the generalized Stokes-Einstein relation in bulk to the interface we arrive at the viscoelastic modulus for the respective monolayers as a function of surface density. Measurements on monolayers of glassy as well as nonglassy polymers and a standard fatty acid clearly show sensitivity of our technique to subtle variations, in the viscoelastic properties of the highly confined materials under compression. Evidence for possible spatial variations of such viscoelastic properties at a given surface density for the fatty acid monolayer is also provided.