967 resultados para CLOUD-POINT CURVES
Resumo:
The re-ignition characteristics (variation of re-ignition voltage with time after current zero) of short alternating current arcs between plane brass electrodes in air were studied by observing the average re-ignition voltages on the screen of a cathode-ray oscilloscope and controlling the rates of rise of voltage by varying the shunting capacitance and hence the natural period of oscillation of the reactors used to limit the current. The shape of these characteristics and the effects on them of varying the electrode separation, air pressure, and current strength were determined.
The results show that short arc spaces recover dielectric strength in two distinct stages. The first stage agrees in shape and magnitude with a previously developed theory that all voltage is concentrated across a partially deionized space charge layer which increases its breakdown voltage with diminishing density of ionization in the field-tree space. The second stage appears to follow complete deionization by the electric field due to displacement of the field-free region by the space charge layer, its magnitude and shape appearing to be due simply to increase in gas density due to cooling. Temperatures calculated from this second stage and ion densities determined from the first stage by means of the space charge equation and an extrapolation of the temperature curve are consistent with recent measurements of arc value by other methods. Analysis or the decrease with time of the apparent ion density shows that diffusion alone is adequate to explain the results and that volume recombination is not. The effects on the characteristics of variations in the parameters investigated are found to be in accord with previous results and with the theory if deionization mainly by diffusion be assumed.
Resumo:
Suppose that AG is a solvable group with normal subgroup G where (|A|, |G|) = 1. Assume that A is a class two odd p group all of whose irreducible representations are isomorphic to subgroups of extra special p groups. If pc ≠ rd + 1 for any c = 1, 2 and any prime r where r2d+1 divides |G| and if CG(A) = 1 then the Fitting length of G is bounded by the power of p dividing |A|.
The theorem is proved by applying a fixed point theorem to a reduction of the Fitting series of G. The fixed point theorem is proved by reducing a minimal counter example. IF R is an extra spec r subgroup of G fixed by A1, a subgroup of A, where A1 centralizes D(R), then all irreducible characters of A1R which are nontrivial on Z(R) are computed. All nonlinear characters of a class two p group are computed.
Resumo:
Three different categories of flow problems of a fluid containing small particles are being considered here. They are: (i) a fluid containing small, non-reacting particles (Parts I and II); (ii) a fluid containing reacting particles (Parts III and IV); and (iii) a fluid containing particles of two distinct sizes with collisions between two groups of particles (Part V).
Part I
A numerical solution is obtained for a fluid containing small particles flowing over an infinite disc rotating at a constant angular velocity. It is a boundary layer type flow, and the boundary layer thickness for the mixture is estimated. For large Reynolds number, the solution suggests the boundary layer approximation of a fluid-particle mixture by assuming W = Wp. The error introduced is consistent with the Prandtl’s boundary layer approximation. Outside the boundary layer, the flow field has to satisfy the “inviscid equation” in which the viscous stress terms are absent while the drag force between the particle cloud and the fluid is still important. Increase of particle concentration reduces the boundary layer thickness and the amount of mixture being transported outwardly is reduced. A new parameter, β = 1/Ω τv, is introduced which is also proportional to μ. The secondary flow of the particle cloud depends very much on β. For small values of β, the particle cloud velocity attains its maximum value on the surface of the disc, and for infinitely large values of β, both the radial and axial particle velocity components vanish on the surface of the disc.
Part II
The “inviscid” equation for a gas-particle mixture is linearized to describe the flow over a wavy wall. Corresponding to the Prandtl-Glauert equation for pure gas, a fourth order partial differential equation in terms of the velocity potential ϕ is obtained for the mixture. The solution is obtained for the flow over a periodic wavy wall. For equilibrium flows where λv and λT approach zero and frozen flows in which λv and λT become infinitely large, the flow problem is basically similar to that obtained by Ackeret for a pure gas. For finite values of λv and λT, all quantities except v are not in phase with the wavy wall. Thus the drag coefficient CD is present even in the subsonic case, and similarly, all quantities decay exponentially for supersonic flows. The phase shift and the attenuation factor increase for increasing particle concentration.
Part III
Using the boundary layer approximation, the initial development of the combustion zone between the laminar mixing of two parallel streams of oxidizing agent and small, solid, combustible particles suspended in an inert gas is investigated. For the special case when the two streams are moving at the same speed, a Green’s function exists for the differential equations describing first order gas temperature and oxidizer concentration. Solutions in terms of error functions and exponential integrals are obtained. Reactions occur within a relatively thin region of the order of λD. Thus, it seems advantageous in the general study of two-dimensional laminar flame problems to introduce a chemical boundary layer of thickness λD within which reactions take place. Outside this chemical boundary layer, the flow field corresponds to the ordinary fluid dynamics without chemical reaction.
Part IV
The shock wave structure in a condensing medium of small liquid droplets suspended in a homogeneous gas-vapor mixture consists of the conventional compressive wave followed by a relaxation region in which the particle cloud and gas mixture attain momentum and thermal equilibrium. Immediately following the compressive wave, the partial pressure corresponding to the vapor concentration in the gas mixture is higher than the vapor pressure of the liquid droplets and condensation sets in. Farther downstream of the shock, evaporation appears when the particle temperature is raised by the hot surrounding gas mixture. The thickness of the condensation region depends very much on the latent heat. For relatively high latent heat, the condensation zone is small compared with ɅD.
For solid particles suspended initially in an inert gas, the relaxation zone immediately following the compression wave consists of a region where the particle temperature is first being raised to its melting point. When the particles are totally melted as the particle temperature is further increased, evaporation of the particles also plays a role.
The equilibrium condition downstream of the shock can be calculated and is independent of the model of the particle-gas mixture interaction.
Part V
For a gas containing particles of two distinct sizes and satisfying certain conditions, momentum transfer due to collisions between the two groups of particles can be taken into consideration using the classical elastic spherical ball model. Both in the relatively simple problem of normal shock wave and the perturbation solutions for the nozzle flow, the transfer of momentum due to collisions which decreases the velocity difference between the two groups of particles is clearly demonstrated. The difference in temperature as compared with the collisionless case is quite negligible.
Resumo:
Sampling was concentrated on the North Moor region and the series of ditches which drained this area to the Bristol Channel. Although most ditches were not deep the mud substratum precluded sampling from within the habitat. All samples were taken with a pond net from the banks. Efforts were made to sample each part of the habitat although in some ditches the macrophyte growth was so intense as to make sampling difficult particularly of the sediments. Organisms were identified on the 10 sampling sites.
Resumo:
A study of human eye movements was made in order to elucidate the nature of the control mechanism in the binocular oculomotor system.
We first examined spontaneous eye movements during monocular and binocular fixation in order to determine the corrective roles of flicks and drifts. It was found that both types of motion correct fixational errors, although flicks are somewhat more active in this respect. Vergence error is a stimulus for correction by drifts but not by flicks, while binocular vertical discrepancy of the visual axes does not trigger corrective movements.
Second, we investigated the non-linearities of the oculomotor system by examining the eye movement responses to point targets moving in two dimensions in a subjectively unpredictable manner. Such motions consisted of hand-limited Gaussian random motion and also of the sum of several non-integrally related sinusoids. We found that there is no direct relationship between the phase and the gain of the oculomotor system. Delay of eye movements relative to target motion is determined by the necessity of generating a minimum afferent (input) signal at the retina in order to trigger corrective eye movements. The amplitude of the response is a function of the biological constraints of the efferent (output) portion of the system: for target motions of narrow bandwidth, the system responds preferentially to the highest frequency; for large bandwidth motions, the system distributes the available energy equally over all frequencies. Third, the power spectra of spontaneous eye movements were compared with the spectra of tracking eye movements for Gaussian random target motions of varying bandwidths. It was found that there is essentially no difference among the various curves. The oculomotor system tracks a target, not by increasing the mean rate of impulses along the motoneurons of the extra-ocular muscles, but rather by coordinating those spontaneous impulses which propagate along the motoneurons during stationary fixation. Thus, the system operates at full output at all times.
Fourth, we examined the relative magnitude and phase of motions of the left and the right visual axes during monocular and binocular viewing. We found that the two visual axes move vertically in perfect synchronization at all frequencies for any viewing condition. This is not true for horizontal motions: the amount of vergence noise is highest for stationary fixation and diminishes for tracking tasks as the bandwidth of the target motion increases. Furthermore, movements of the occluded eye are larger than those of the seeing eye in monocular viewing. This effect is more pronounced for horizontal motions, for stationary fixation, and for lower frequencies.
Finally, we have related our findings to previously known facts about the pertinent nerve pathways in order to postulate a model for the neurological binocular control of the visual axes.
Resumo:
In a paper published in 1961, L. Cesari [1] introduces a method which extends certain earlier existence theorems of Cesari and Hale ([2] to [6]) for perturbation problems to strictly nonlinear problems. Various authors ([1], [7] to [15]) have now applied this method to nonlinear ordinary and partial differential equations. The basic idea of the method is to use the contraction principle to reduce an infinite-dimensional fixed point problem to a finite-dimensional problem which may be attacked using the methods of fixed point indexes.
The following is my formulation of the Cesari fixed point method:
Let B be a Banach space and let S be a finite-dimensional linear subspace of B. Let P be a projection of B onto S and suppose Г≤B such that pГ is compact and such that for every x in PГ, P-1x∩Г is closed. Let W be a continuous mapping from Г into B. The Cesari method gives sufficient conditions for the existence of a fixed point of W in Г.
Let I denote the identity mapping in B. Clearly y = Wy for some y in Г if and only if both of the following conditions hold:
(i) Py = PWy.
(ii) y = (P + (I - P)W)y.
Definition. The Cesari fixed paint method applies to (Г, W, P) if and only if the following three conditions are satisfied:
(1) For each x in PГ, P + (I - P)W is a contraction from P-1x∩Г into itself. Let y(x) be that element (uniqueness follows from the contraction principle) of P-1x∩Г which satisfies the equation y(x) = Py(x) + (I-P)Wy(x).
(2) The function y just defined is continuous from PГ into B.
(3) There are no fixed points of PWy on the boundary of PГ, so that the (finite- dimensional) fixed point index i(PWy, int PГ) is defined.
Definition. If the Cesari fixed point method applies to (Г, W, P) then define i(Г, W, P) to be the index i(PWy, int PГ).
The three theorems of this thesis can now be easily stated.
Theorem 1 (Cesari). If i(Г, W, P) is defined and i(Г, W, P) ≠0, then there is a fixed point of W in Г.
Theorem 2. Let the Cesari fixed point method apply to both (Г, W, P1) and (Г, W, P2). Assume that P2P1=P1P2=P1 and assume that either of the following two conditions holds:
(1) For every b in B and every z in the range of P2, we have that ‖b=P2b‖ ≤ ‖b-z‖
(2)P2Г is convex.
Then i(Г, W, P1) = i(Г, W, P2).
Theorem 3. If Ω is a bounded open set and W is a compact operator defined on Ω so that the (infinite-dimensional) Leray-Schauder index iLS(W, Ω) is defined, and if the Cesari fixed point method applies to (Ω, W, P), then i(Ω, W, P) = iLS(W, Ω).
Theorems 2 and 3 are proved using mainly a homotopy theorem and a reduction theorem for the finite-dimensional and the Leray-Schauder indexes. These and other properties of indexes will be listed before the theorem in which they are used.
Resumo:
Background: Recently, with the access of low toxicity biological and targeted therapies, evidence of the existence of a long-term survival subpopulation of cancer patients is appearing. We have studied an unselected population with advanced lung cancer to look for evidence of multimodality in survival distribution, and estimate the proportion of long-term survivors. Methods: We used survival data of 4944 patients with non-small-cell lung cancer (NSCLC) stages IIIb-IV at diagnostic, registered in the National Cancer Registry of Cuba (NCRC) between January 1998 and December 2006. We fitted one-component survival model and two-component mixture models to identify short-and long-term survivors. Bayesian information criterion was used for model selection. Results: For all of the selected parametric distributions the two components model presented the best fit. The population with short-term survival (almost 4 months median survival) represented 64% of patients. The population of long-term survival included 35% of patients, and showed a median survival around 12 months. None of the patients of short-term survival was still alive at month 24, while 10% of the patients of long-term survival died afterwards. Conclusions: There is a subgroup showing long-term evolution among patients with advanced lung cancer. As survival rates continue to improve with the new generation of therapies, prognostic models considering short-and long-term survival subpopulations should be considered in clinical research.
Resumo:
Sheet resistance of laser-irradiated Ge2Sb2Te5 thin films prepared by magnetron sputtering was measured by the four-point probe method. With increasing laser power the sheet resistance undergoes an abrupt drop from 10(7) to 10(3) Omega/square at about 580 mW. The abrupt drop in resistance is due to the structural change from amorphous to crystalline state as revealed by X-ray diffraction (XRD) study of the samples around the abrupt change point. Crystallized dots were also formed in the amorphous Ge2Sb2Te5 films by focused short pulse laser-irradiated, the resistivities at the crystallized dots and the non-crystallized area are 3.375 x 10(-3) and 2.725 Omega m, sheet resistance is 3.37 x 10(4) and 2.725 x 10(7) Omega/square respectively, deduced from the I-V Curves that is obtained by conductive atomic force microscope (C-AFM). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present some coincidence point theorems in the setting of quasi-metric spaces that can be applied to operators which not necessarily have the mixed monotone property. As a consequence, we particularize our results to the field of metric spaces, partially ordered metric spaces and G-metric spaces, obtaining some very recent results. Finally, we show how to use our main theorems to obtain coupled, tripled, quadrupled and multidimensional coincidence point results.