853 resultados para CHARACTERISATION
Resumo:
Human cadavers have long been used to teach human anatomy and are increasingly used in other disciplines. Different embalming techniques have been reported in the literature; however there is no clear consensus on the opinion of anatomists on the utility of embalmed cadavers for the teaching of anatomy. To this end, we aimed to survey British and Irish anatomy teachers to report their opinions on different preservation methods for the teaching of anatomy. In this project eight human cadavers were embalmed using formalin, Genelyn, Thiel and Imperial College London- Soft Preserving (ICL-SP) techniques to compare different characteristics of these four techniques. The results of this thesis show that anatomy teachers consider hard-fixed cadavers not to be the most accurate teaching model in comparison to the human body, although it still serves as a useful teaching method (Chapter 2). In addition, our findings confirm that joints of cadavers embalmed using ICL-SP solution faithfully mimics joints of an unembalmed cadaver compared to the other techniques (Chapter 3). Embalming a human body prevents the deterioration in the quality of images and our findings highlight that the influence of the embalming solutions varied with the radiological modality used (Chapter 4). The method developed as part of this thesis enables anatomists and forensic scientists to quantify the decomposition rate of an embalmed human cadaver (Chapter 5). Formalin embalming solution showed the strongest antimicrobial abilities followed by Thiel, Genelyn and finally by ICL-SP (Chapter 6). The overarching viewpoint of this set of studies show that it is inaccurate to state that one embalming technique is ultimately the best. The value of each technique differs based on the requirement of the particular education or research area. Hence we highlight how different embalming techniques may be better suited to certain fields of study.
Resumo:
The Bifibobacterium longum subsp. longum 35624™ strain (formerly named Bifidobacterium longum subsp. infantis) is a well described probiotic with clinical efficacy in Irritable Bowel Syndrome clinical trials and induces immunoregulatory effects in mice and in humans. This paper presents (a) the genome sequence of the organism allowing the assignment to its correct subspeciation longum; (b) a comparative genome assessment with other B. longum strains and (c) the molecular structure of the 35624 exopolysaccharide (EPS624). Comparative genome analysis of the 35624 strain with other B. longum strains determined that the sub-speciation of the strain is longum and revealed the presence of a 35624-specific gene cluster, predicted to encode the biosynthetic machinery for EPS624. Following isolation and acid treatment of the EPS, its chemical structure was determined using gas and liquid chromatography for sugar constituent and linkage analysis, electrospray and matrix assisted laser desorption ionization mass spectrometry for sequencing and NMR. The EPS consists of a branched hexasaccharide repeating unit containing two galactose and two glucose moieties, galacturonic acid and the unusual sugar 6-deoxy-L-talose. These data demonstrate that the B. longum 35624 strain has specific genetic features, one of which leads to the generation of a characteristic exopolysaccharide.
Resumo:
The taxonomic composition and types of particles comprising the downward particle flux were examined during the mesoscale artificial iron fertilisation experiment LOHAFEX. The experiment was conducted in low-silicate waters of the Atlantic Sector of the Southern Ocean during austral summer (January-March 2009), and induced a bloom dominated by small flagellates. Downward particle flux was low throughout the experiment, and not enhanced by addition of iron; neutrally buoyant sediment traps contained mostly faecal pellets and faecal material apparently reprocessed by mesozooplankton. TEP fluxes were low, <5 mg GX eq/m**2/day, and a few phytodetrital aggregates were found in the sediment traps. Only a few per cent of the POC flux was found in the traps consisting of intact protist plankton, although remains of taxa with hard body parts (diatoms, tintinnids, thecate dinoflagellates and foraminifera) were numerous, far more so than intact specimens of these taxa. Nevertheless, many small flagellates and coccoid cells, belonging to the pico- and nanoplankton, were found in the traps, and these small, soft-bodied cells probably contributed the majority of downward POC flux via mesozooplankton grazing and faecal pellet export. TEP likely played an important role by aggregating these small cells, and making them more readily available to mesozooplankton grazers.
Resumo:
Synthesis of Polyhydroxyalkanoates (PHAs) by Pseudomonas mendocina, using different vegetable oils such as, coconut oil, groundnut oil, corn oil and olive oil, as the sole carbon source was investigated for the first time. The PHA yield obtained was compared with that obtained during the production of PHAs using sodium octanoate as the sole carbon source. The fermentation profiles at shaken flask and bioreactor levels revealed that vegetable oils supported the growth of Pseudomonas mendocina and PHA accumulation in this organism. Moreover, when vegetable oil (coconut oil) was used as the sole carbon source, fermentation profiles showed better growth and polymer production as compared to conditions when sodium octanoate was used as the carbon source. In addition, comparison of PHA accumulation at shaken flask and fermenter level confirmed the higher PHA yield at shaken flask level production. The highest cell mass found using sodium octanoate was 1.8 g/L, whereas cell mass as high as 5.1 g/L was observed when coconut oil was used as the feedstock at flask level production. Moreover, the maximum PHA yield of 60.5% dry cell weight (dcw) was achieved at shaken flask level using coconut oil as compared to the PHA yield of 35.1% dcw obtained using sodium octanoate as the sole carbon source. Characterisations of the chemical, physical, mechanical, surface and biocompatibility properties of the polymers produced have been carried out by performing different analyses as described in the second chapter of this study. Chemical analysis using GC and FTIR investigations showed medium chain length (MCL) PHA production in all conditions. GC-MS analysis revealed a unique terpolymer production, containing 3-hydroxyoctanoic acid, 3-hydroxydecanoic acid and 3-hydroxydodecanoic acid when coconut oil, groundnut oil, olive oil, and corn oil were used as the carbon source. Whereas production of the homopolymer containing 3-hydroxyoctanoic acid was observed when sodium octanoate was used as the carbon source. MCL-PHAs produced in this study using sodium octanoate, coconut oil, and olive oil exhibited melting transitions, indicating that each of the PHA was crystalline or semi-crystalline polymer. In contrast, the thermal properties of PHAs produced from groundnut and corn oils showed no melting transition, indicating that they were completely amorphous or semi-crystalline, which was also confirmed by the X-Ray Diffraction (XRD) results obtained in this study. Mechanical analysis of the polymers produced showed higher stiffness of the polymer produced from coconut oil than the polymer from sodium octanoate. Surface characterisation of the polymers using Scanning Electron Microscopy (SEM) revealed a rough surface topography and surface contact angle measurement revealed their hydrophobic nature. Moreover, to investigate the potential applicability of the produced polymers as the scaffold materials for dental pulp regeneration, multipotent human Mesenchymal stem cells (hMSCs) were cultured onto the polymer films. Results indicated that these polymers are not cytotoxic towards the hMSCs and could support their attachment and proliferation. Highest cell growth was observed on the polymer samples produced from corn oil, followed by the polymer produced using coconut oil. In conclusion, this work established, for the first time, that vegetable oils are a good economical source of carbon for production of MCL-PHA copolymers effectively by Pseudomonas mendocina. Moreover, biocompatibility studies suggest that the produced polymers may have potential for dental tissue engineering application.
Resumo:
Microalgae are of increasing interest due to their occurrence in the environment as harmful algal blooms and as a source of biomass for the production of fine and bulk chemicals. A method for the low cost disruption of algal biomass for environmental remediation or bioprocessing is desirable. Naturally-occurring algal lytic agents from bacteria could provide a cost-effective and environmentally desirable solution. A screen for algal lytic agents against a range of marine microalgae has identified two strains of algicidal bacteria isolated from the coastal region of the Western English Channel. Both strains (designated EC-1 and EC-2) showed significant algicidal activity against Skeletonema sp. and were identified as members of Alteromonas sp. and Maribacter sp. respectively. Characterisation of the two bioactivities revealed that they are small extracellular metabolites displaying thermal and acid stability. Purification of the EC-1 activity to homogeneity and initial structural analysis has identified it as a putative peptide with a mass of 1266. amu.
Resumo:
Microalgae are of increasing interest due to their occurrence in the environment as harmful algal blooms and as a source of biomass for the production of fine and bulk chemicals. A method for the low cost disruption of algal biomass for environmental remediation or bioprocessing is desirable. Naturally-occurring algal lytic agents from bacteria could provide a cost-effective and environmentally desirable solution. A screen for algal lytic agents against a range of marine microalgae has identified two strains of algicidal bacteria isolated from the coastal region of the Western English Channel. Both strains (designated EC-1 and EC-2) showed significant algicidal activity against Skeletonema sp. and were identified as members of Alteromonas sp. and Maribacter sp. respectively. Characterisation of the two bioactivities revealed that they are small extracellular metabolites displaying thermal and acid stability. Purification of the EC-1 activity to homogeneity and initial structural analysis has identified it as a putative peptide with a mass of 1266. amu.
Resumo:
A non-Markovian process is one that retains `memory' of its past. A systematic understanding of these processes is necessary to fully describe and harness a vast range of complex phenomena; however, no such general characterisation currently exists. This long-standing problem has hindered advances in understanding physical, chemical and biological processes, where often dubious theoretical assumptions are made to render a dynamical description tractable. Moreover, the methods currently available to treat non-Markovian quantum dynamics are plagued with unphysical results, like non-positive dynamics. Here we develop an operational framework to characterise arbitrary non-Markovian quantum processes. We demonstrate the universality of our framework and how the characterisation can be rendered efficient, before formulating a necessary and sufficient condition for quantum Markov processes. Finally, we stress how our framework enables the actual systematic analysis of non-Markovian processes, the understanding of their typicality, and the development of new master equations for the effective description of memory-bearing open-system evolution.
Resumo:
BACKGROUND: Acetylcholinesterase (AChE) is an important metabolic enzyme of schistosomes present in the musculature and on the surface of the blood stage where it has been implicated in the modulation of glucose scavenging from mammalian host blood. As both a target for the antischistosomal drug metrifonate and as a potential vaccine candidate, AChE has been characterised in the schistosome species Schistosoma mansoni, S. haematobium and S. bovis, but not in S. japonicum. Recently, using a schistosome protein microarray, a predicted S. japonicum acetylcholinesterase precursor was significantly targeted by protective IgG1 immune responses in S. haematobium-exposed individuals that had acquired drug-induced resistance to schistosomiasis after praziquantel treatment.
RESULTS: We report the full-length cDNA sequence and describe phylogenetic and molecular structural analysis to facilitate understanding of the biological function of AChE (SjAChE) in S. japonicum. The protein has high sequence identity (88 %) with the AChEs in S. mansoni, S. haematobium and S. bovis and has 25 % sequence similarity with human AChE, suggestive of a highly specialised role for the enzyme in both parasite and host. We immunolocalized SjAChE and demonstrated its presence on the surface of adult worms and schistosomula, as well as its lower expression in parenchymal regions. The relatively abundance of AChE activity (90 %) present on the surface of adult S. japonicum when compared with that reported in other schistosomes suggests SjAChE may be a more effective drug or immunological target against this species. We also demonstrate that the classical inhibitor of AChE, BW285c51, inhibited AChE activity in tegumental extracts of paired worms, single males and single females by 59, 22 and 50 %, respectively, after 24 h incubation with 200 μM BW284c51.
CONCLUSIONS: These results build on previous studies in other schistosome species indicating major differences in the enzyme between parasite and mammalian host, and provide further support for the design of an anti-schistosome intervention targeting AChE.
Resumo:
BACKGROUND: Proteins belonging to the serine protease inhibitor (serpin) superfamily play essential physiological roles in many organisms. In pathogens, serpins are thought to have evolved specifically to limit host immune responses by interfering with the host immune-stimulatory signals. Serpins are less well characterised in parasitic helminths, although some are thought to be involved in mechanisms associated with host immune modulation. In this study, we cloned and partially characterised a secretory serpin from Schistosoma japonicum termed SjB6, these findings provide the basis for possible functional roles.
METHODS: SjB6 gene was identified through database mining of our previously published microarray data, cloned and detailed sequence and structural analysis and comparative modelling carried out using various bioinformatics and proteomics tools. Gene transcriptional profiling was determined by real-time PCR and the expression of native protein determined by immunoblotting. An immunological profile of the recombinant protein produced in insect cells was determined by ELISA.
RESULTS: SjB6 contains an open reading frame of 1160 base pairs that encodes a protein of 387 amino acid residues. Detailed sequence analysis, comparative modelling and structural-based alignment revealed that SjB6 contains the essential structural motifs and consensus secondary structures typical of inhibitory serpins. The presence of an N-terminal signal sequence indicated that SjB6 is a secretory protein. Real-time data indicated that SjB6 is expressed exclusively in the intra-mammalian stage of the parasite life cycle with its highest expression levels in the egg stage (p < 0.0001). The native protein is approximately 60 kDa in size and recombinant SjB6 (rSjB6) was recognised strongly by sera from rats experimentally infected with S. japonicum.
CONCLUSIONS: The significantly high expression of SjB6 in schistosome eggs, when compared to other life cycle stages, suggests a possible association with disease pathology, while the strong reactivity of sera from experimentally infected rats against rSjB6 suggests that native SjB6 is released into host tissue and induces an immune response. This study presents a comprehensive demonstration of sequence and structural-based analysis of a secretory serpin from a trematode and suggests SjB6 may be associated with important functional roles in S. japonicum, particularly in parasite modulation of the host microenvironment.
Resumo:
The predictive capability of high fidelity finite element modelling, to accurately capture damage and crush behaviour of composite structures, relies on the acquisition of accurate material properties, some of which have necessitated the development of novel approaches. This paper details the measurement of interlaminar and intralaminar fracture toughness, the non-linear shear behaviour of carbon fibre (AS4)/thermoplastic Polyetherketoneketone (PEKK) composite laminates and the utilisation of these properties for the accurate computational modelling of crush. Double-cantilever-beam (DCB), four-point end-notched flexure (4ENF) and Mixed-mode bending (MMB) test configurations were used to determine the initiation and propagation fracture toughness in mode I, mode II and mixed-mode loading, respectively. Compact Tension (CT) and Compact Compression (CC) test samples were employed to determine the intralaminar longitudinal tensile and compressive fracture toughness. V-notched rail shear tests were used to measure the highly non-linear shear behaviour, associated with thermoplastic composites, and fracture toughness. Corresponding numerical models of these tests were developed for verification and yielded good correlation with the experimental response. This also confirmed the accuracy of the measured values which were then employed as input material parameters for modelling the crush behaviour of a corrugated test specimen.
Resumo:
Engineered cocrystals offer an alternative solid drug form with tailored physicochemical properties. Interestingly, although cocrystals provide many new possibilities, they also present new challenges, particularly in regard to their design and large-scale manufacture. Current literature has primarily focused on the preparation and characterization of novel cocrystals typically containing only the drug and coformer, leaving the subsequent formulation less explored. In this paper we propose, for the first time, the use of hot melt extrusion for the mechanochemical synthesis of pharmaceutical cocrystals in the presence of a meltable binder. In this approach, we examine excipients that are amenable to hot melt extrusion, forming a suspension of cocrystal particulates embedded in a pharmaceutical matrix. Using ibuprofen and isonicotinamide as a model cocrystal reagent pair, formulations extruded with a small molecular matrix carrier (xylitol) were examined to be intimate mixtures wherein the newly formed cocrystal particulates were physically suspended in a matrix. With respect to formulations extruded using polymeric carriers (Soluplus and Eudragit EPO, respectively), however, there was no evidence within PXRD patterns of either crystalline ibuprofen or the cocrystal. Importantly, it was established in this study that an appropriate carrier for a cocrystal reagent pair during HME processing should satisfy certain criteria including limited interaction with parent reagents and cocrystal product, processing temperature sufficiently lower than the onset of cocrystal Tm, low melt viscosity, and rapid solidification upon cooling.
Resumo:
Wind generation in highly interconnected power networks creates local and centralised stability issues based on their proximity to conventional synchronous generators and load centres. This paper examines the large disturbance stability issues (i.e. rotor angle and voltage stability) in power networks with geographically distributed wind resources in the context of a number of dispatch scenarios based on profiles of historical wind generation for a real power network. Stability issues have been analysed using novel stability indices developed from dynamic characteristics of wind generation. The results of this study show that localised stability issues worsen when significant penetration of both conventional and wind generation is present due to their non-complementary characteristics. In contrast, network stability improves when either high penetration of wind and synchronous generation is present in the network. Therefore, network regions can be clustered into two distinct stability groups (i.e. superior stability and inferior stability regions). Network stability improves when a voltage control strategy is implemented at wind farms, however both stability clusters remain unchanged irrespective of change in the control strategy. Moreover, this study has shown that the enhanced fault ride-through (FRT) strategy for wind farms can improve both voltage and rotor angle stability locally, but only a marginal improvement is evident in neighbouring regions.