997 resultados para CHAIN CONFORMATIONAL KINETICS
Resumo:
The effect of high pressure processing (400 MPa for 10 min) and natural antimicrobials 2 (enterocins and lactate-diacetate) on the behaviour of L. monocytogenes in sliced cooked ham 3 during refrigerated storage (1ºC and 6ºC) was assessed. The efficiency of the treatments after a 4 cold chain break was evaluated. Lactate-diacetate exerted a bacteriostatic effect against L. 5 monocytogenes during the whole storage period (3 months) at 1ºC and 6ºC, even after 6 temperature abuse. The combination of low storage temperature (1ºC), high pressure 7 processing (HPP) and addition of lactate-diacetate reduced the levels of L. monocytogenes 8 during storage by 2.7 log CFU/g. The most effective treatment was the combination of HPP, 9 enterocins and refrigeration at 1ºC, which reduced the population of the pathogen to final counts 10 of 4 MPN/g after 3 months of storage, even after the cold chain break.
Resumo:
T cell receptor (TCR-CD3) triggering involves both receptor clustering and conformational changes at the cytoplasmic tails of the CD3 subunits. The mechanism by which TCRalphabeta ligand binding confers conformational changes to CD3 is unknown. By using well-defined ligands, we showed that induction of the conformational change requires both multivalent engagement and the mobility restriction of the TCR-CD3 imposed by the plasma membrane. The conformational change is elicited by cooperative rearrangements of two TCR-CD3 complexes and does not require accompanying changes in the structure of the TCRalphabeta ectodomains. This conformational change at CD3 reverts upon ligand dissociation and is required for T cell activation. Thus, our permissive geometry model provides a molecular mechanism that rationalizes how the information of ligand binding to TCRalphabeta is transmitted to the CD3 subunits and to the intracellular signaling machinery.
Resumo:
BACKGROUND: Dermatophytes are the main cause of onychomycoses, but various nondermatophyte filamentous fungi are often isolated from abnormal nails. The correct identification of the aetiological agent of nail infections is necessary in order to recommend appropriate treatment. OBJECTIVE: To evaluate a rapid polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay based on 28S rDNA for fungal identification in nails on a large number of samples in comparison with cultures. METHODS: Infectious fungi were analysed using PCR-RFLP in 410 nail samples in which fungal elements were observed in situ by direct mycological examination (positive samples). The results were compared with those previously obtained by culture of fungi on Sabouraud agar from the same nail samples. RESULTS: PCR-RFLP identification of fungi in nails allowed validation of the results obtained in culture when Trichophyton spp. grew from infected samples. In addition, nondermatophyte filamentous fungi could be identified with certainty as the infectious agents in onychomycosis, and discriminated from dermatophytes as well as from transient contaminants. The specificity of the culture results relative to PCR-RFLP appeared to be 81%, 71%, 52% and 63% when Fusarium spp., Scopulariopsis brevicaulis, Aspergillus spp. and Candida spp., respectively, grew on Sabouraud agar. It was also possible to identify the infectious agent when direct nail mycological examination showed fungal elements, but negative results were obtained from fungal culture. CONCLUSIONS: Improved sensitivity for the detection of fungi in nails was obtained using the PCR-RFLP assay. Rapid and reliable molecular identification of the infectious fungus can be used routinely and presents several important advantages compared with culture in expediting the choice of appropriate antifungal therapy.
Resumo:
The cause of many autoimmune and inflammatory diseases is unresolved, although dysregulated production of tumor necrosis factor (TNF) family members appears to be important in many cases. BAFF, a new member of the TNF family, binds to B cells and costimulates their growth in vitro. Mice transgenic for BAFF have vastly increased numbers of mature B and effector T cells, and develop autoimmune-like manifestations such as the presence of high levels of rheumatoid factors, circulating immune complexes, anti-DNA autoantibodies, and immunoglobulin deposition in the kidneys. This phenotype is reminiscent of certain human autoimmune disorders and suggests that dysregulation of BAFF expression may be a critical element in the chain of events leading to autoimmunity.
Resumo:
Methadone inhibits the cardiac potassium channel hERG and can cause a prolonged QT interval. Methadone is chiral but its therapeutic activity is mainly due to (R)-methadone. Whole-cell patch-clamp experiments using cells expressing hERG showed that (S)-methadone blocked the hERG current 3.5-fold more potently than (R)-methadone (IC50s (half-maximal inhibitory concentrations) at 37 degrees C: 2 and 7 microM). As CYP2B6 slow metabolizer (SM) status results in a reduced ability to metabolize (S)-methadone, electrocardiograms, CYP2B6 genotypes, and (R)- and (S)-methadone plasma concentrations were obtained for 179 patients receiving (R,S)-methadone. The mean heart-rate-corrected QT (QTc) was higher in CYP2B6 SMs (*6/*6 genotype; 439+/-25 ms; n=11) than in extensive metabolizers (non *6/*6; 421+/-25 ms; n=168; P=0.017). CYP2B6 SM status was associated with an increased risk of prolonged QTc (odds ratio=4.5, 95% confidence interval=1.2-17.7; P=0.03). This study reports the first genetic factor implicated in methadone metabolism that may increase the risk of cardiac arrhythmias and sudden death. This risk could be reduced by the administration of (R)-methadone.
Resumo:
The disintegration of recovered paper is the first operation in the preparation of recycled pulp. It is known that the defibering process follows a first order kinetics from which it is possible to obtain the disintegration kinetic constant (KD) by means of different ways. The disintegration constant can be obtained from the Somerville index results (%lsv and from the dissipated energy per volume unit (Ss). The %slv is related to the quantity of non-defibrated paper, as a measure of the non-disintegrated fiber residual (percentage of flakes), which is expressed in disintegration time units. In this work, disintegration kinetics from recycled coated paper has been evaluated, working at 20 revise rotor speed and for different fiber consistency (6, 8, 10, 12 and 14%). The results showed that the values of experimental disintegration kinetic constant, Ko, through the analysis of Somerville index, as function of time. Increased, the disintegration time was drastically reduced. The calculation of the disintegration kinetic constant (modelled Ko), extracted from the Rayleigh’s dissipation function, showed a good correlation with the experimental values using the evolution of the Somerville index or with the dissipated energy
Resumo:
A total of 49 wastewater samples from 23 different wastewater treatment plants (WWTPs) were analyzed using real-time quantitative polymerase chain reaction for the presence and quantity of thermotolerant campylobacters. Thermotolerant campylobacters were detected in 87.5% (21/24) and 64% (16/25) of untreated and treated wastewater samples, respectively. Their concentration was sufficiently high to be quantified in 20.4% (10/49) of the samples. In these samples, the concentration ranged from 68 000 to 2292 000 cells/L in untreated wastewater and from 10 800 to 28 000 cells/L in treated water. We conclude that thermotolerant campylobacters present a health hazard for workers at WWTPs in Switzerland. [Authors]
Resumo:
The disintegration of recovered paper is the first operation in the preparation of recycled pulp. It is known that the defibering process follows a first order kinetics from which it is possible to obtain the disintegration kinetic constant (KD) by means of different ways. The disintegration constant can be obtained from the Somerville index results (%lsv and from the dissipated energy per volume unit (Ss). The %slv is related to the quantity of non-defibrated paper, as a measure of the non-disintegrated fiber residual (percentage of flakes), which is expressed in disintegration time units. In this work, disintegration kinetics from recycled coated paper has been evaluated, working at 20 revise rotor speed and for different fiber consistency (6, 8, 10, 12 and 14%). The results showed that the values of experimental disintegration kinetic constant, Ko, through the analysis of Somerville index, as function of time. Increased, the disintegration time was drastically reduced. The calculation of the disintegration kinetic constant (modelled Ko), extracted from the Rayleigh’s dissipation function, showed a good correlation with the experimental values using the evolution of the Somerville index or with the dissipated energy
Resumo:
Anti-idiotype antibody therapy of B-cell lymphomas, despite numerous promising experimental and clinical studies, has so far met with limited success. Tailor-made monoclonal anti-idiotype antibodies have been injected into a large series of lymphoma patients, with a few impressive complete tumour remissions but a large majority of negative responses. The results presented here suggest that, by coupling to antilymphoma idiotype antibodies a few molecules of the tetanus toxin universal epitope peptide P2 (830-843), one could markedly increase the efficiency of this therapy. We show that after 2-hr incubation with conjugates consisting of the tetanus toxin peptide P2 coupled by an S-S bridge to monoclonal antibodies directed to the lambda light chain of human immunoglobulin, human B-lymphoma cells can be specifically lysed by a CD4 T-lymphocyte clone specific for the P2 peptide. Antibody without peptide did not induce B-cell killing by the CD4 T-lymphocyte clone. The free cysteine-peptide was also able to induce lysis of the B-lymphoma target by the T-lymphocyte clone, but at a molar concentration 500 to 1000 times higher than that of the coupled peptide. Proliferation assays confirmed that the antibody-peptide conjugate was antigenically active at a much lower concentration than the free peptide. They also showed that antibody-peptide conjugates required an intact processing function of the B cell for peptide presentation, which could be selectively inhibited by leupeptin and chloroquine.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Human low-grade astrocytomas frequently recur and progress to states of higher malignancy. During tumor progression TP53 alterations are among the first genetic changes, while derangement of the p16/p14ARF/RB-1 system occurs later. To probe the pathogenetic significance of TP53 and RB-1 alterations, we introduced a v-src transgene driven by glial fibrillary acidic protein (GFAP) regulatory elements (which causes preneoplastic astrocytic lesions and stochastically astrocytomas of varying degrees of malignancy) into TP53+/- or RB-1+/- mice. Hemizygosity for TP53 or RB-1 did not increase the incidence or shorten the latency of astrocytic tumors in GFAP-v-src mice over a period of up to 76 weeks. Single strand conformation analysis of exons 5 to 8 of non-ablated TP53 alleles revealed altered migration patterns in only 3/16 tumors analyzed. Wild-type RB-1 alleles were retained in all RB-1+/-GFAP-v-src mice-derived astrocytic tumors analyzed, and pRb immunostaining revealed protein expression in all tumors. Conversely, the GFAP-v-src transgene did not influence the development of extraneural tumors related to TP53 or RB-1 hemizygosity. Therefore, the present study indicates that neither loss of RB-1 nor of TP53 confer a growth advantage in vivo to preneoplastic astrocytes expressing v-src, and suggests that RB-1 and TP53 belong to one single complementation group along with v-src in this transgenic model of astrocytoma development. The stochastic development of astrocytic tumors in GFAP-v-src, TP53+/- GFAP-v-src, and RB-1+/- GFAP-v-src transgenic mice indicates that additional hitherto unknown genetic lesions of astrocytes contribute to tumorigenesis, whose elucidation may prove important for our understanding of astrocytoma initiation and progression.
Resumo:
We show that transport in the presence of entropic barriers exhibits peculiar characteristics which makes it distinctly different from that occurring through energy barriers. The constrained dynamics yields a scaling regime for the particle current and the diffusion coefficient in terms of the ratio between the work done to the particles and available thermal energy. This interesting property, genuine to the entropic nature of the barriers, can be utilized to effectively control transport through quasi-one-dimensional structures in which irregularities or tortuosity of the boundaries cause entropic effects. The accuracy of the kinetic description has been corroborated by simulations. Applications to different dynamic situations involving entropic barriers are outlined.
Resumo:
This study aimed to compare the effects of 2 different prior endurance exercises on subsequent whole-body fat oxidation kinetics. Fifteen men performed 2 identical submaximal incremental tests (Incr2) on a cycle ergometer after (i) a ∼40-min submaximal incremental test (Incr1) followed by a 90-min continuous exercise performed at 50% of maximal aerobic power-output and a 1-h rest period (Heavy); and (ii) Incr1 followed by a 2.5-h rest period (Light). Fat oxidation was measured using indirect calorimetry and plotted as a function of exercise intensity during Incr1 and Incr2. A sinusoidal equation, including 3 independent variables (dilatation, symmetry and translation), was used to characterize the fat oxidation kinetics and to determine the intensity (Fat(max)) that elicited the maximal fat oxidation (MFO) during Incr. After the Heavy and Light trials, Fat(max), MFO, and fat oxidation rates were significantly greater during Incr2 than Incr1 (p < 0.001). However, Δ (i.e., Incr2-Incr1) Fat(max), MFO, and fat oxidation rates were greater in the Heavy compared with the Light trial (p < 0.05). The fat oxidation kinetics during Incr2(Heavy) showed a greater dilatation and rightward asymmetry than Incr1(Heavy), whereas only a greater dilatation was observed in Incr2(Light) (p < 0.05). This study showed that although to a lesser extent in the Light trial, both prior exercise sessions led to an increase in Fat(max), MFO, and absolute fat oxidation rates during Incr2, inducing significant changes in the shape of the fat oxidation kinetics.
Resumo:
The objective of this work was to monitor the maintenance of Citrus tristeza virus (CTV) protective isolates stability in selected clones of 'Pêra' sweet orange (Citrus sinensis), preimmunized or naturally infected by the virus, after successive clonal propagations. The work was carried out in field conditions in the north of Paraná State, Brazil. Coat protein gene (CPG) analysis of 33 isolates collected from 16 clones of 'Pêra' sweet orange was performed using single strand conformational polymorphism (SSCP). Initially, the isolates were characterized by symptoms of stem pitting observed in clones. Then viral genome was extracted and used as template for the amplification of CPG by reverse transcription polimerase chain reaction (RTPCR). RTPCR products electrophoretic profiles were analyzed using the Jaccard coefficient and the UPGMA method. The majority of the clones had weak to moderate stem pitting symptoms and its CTV isolates showed alterations in the SSCP profiles. However, the stability of the protective complex has been maintained, except for isolates from two analised clones. Low genetic variability was observed within the isolates during the studied years.