910 resultados para CD4 T lymphocytes
Resumo:
This study addresses the questions of whether the frequency of generation and in vivo cross-reactivity of highly immunogenic tumor clones induced in a single parental murine fibrosarcoma cell line MCA-F is more closely related to the agent used to induce the Imm$\sp{+}$ clone or whether these characteristics are independent of the agents used. These questions were addressed by treating the parental tumor cell line MCA-F with UV-B radiation (UV-B), 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), or 5-aza-2$\sp\prime$-deoxycytidine (5-azaCdR). The frequency of Imm$\sp{+}$ variant generation was similarly high for the three different agents, suggesting that the frequency of Imm$\sp{+}$ generation was related more closely to the cell line than to the inducing agent used. Cross-reactivity was tested with two Imm$\sp{+}$ clones from each treatment group in a modified immunoprotection assay that selectively engendered antivariant, but not antiparental immunity. Under these conditions each clone, except one, immunized against itself. The MNNG-induced clones engendered stronger antivariant immunity but a weaker variant cross-reactive immunity could also be detected.^ This study also characterized the lymphocyte populations responsible for antivariant and antiparental immunity in vivo. Using the local adoptive transfer assay (LATA) and antibody plus complement depletion of T-cell subsets, we showed that immunity induced by the Imm$\sp{+}$ variants against the parent MCA-F was transferred by the Thy1.2$\sp{+}$, L3T4a$\sp{+}$, Lyt2.1$\sp{-}$ (CD4$\sp{+}$) population, without an apparent contribution by Thy1.2$\sp{+}$, L3T4a$\sp{-}$, Lyt2.1$\sp{+}$ (CD8$\sp{+}$) cells. A role for Lyt2.1$\sp{+}$T lymphocytes in antivariant, but not antiparent immunity was supported by the results of LATA and CTL assays. Immunization with low numbers of viable Imm$\sp{+}$ cells, or with high numbers of non viable Imm$\sp{+}$ cells engendered only antivariant immunity without parental cross-protection. The associative recognition of parental antigens and variant neoantigens resulting in strong antiparent immunity was investigated using somatic cells hybrids of Imm$\sp{+}$ variants of MCA-F and an antigenically distinct tumor MCA-D. An unexpected result of these latter experiments was the expression of a unique tumor-specific antigen by the hybrid cells. These studies demonstrate that the parental tumor-specific antigen and the variant neoantigen must be coexpressed on the cell surface to engender parental cross-protective immunity. (Abstract shortened with permission of author.) ^
Resumo:
Cutaneous exposure to ultraviolet-B radiation (UVR) results in the suppression of cell-mediated immune responses such as contact hypersensitivity (CHS) and delayed-type hypersensitivity (DTH). This modulation of immune responses is mediated by local or systemic mechanisms, both of which are associated with the generation of antigen-specific suppressor T lymphocytes (Ts). UV-induced Ts have been shown to be CD3+CD4+CD8 − T cells that control multiple immunological pathways. However, the precise mechanisms involved in the generation and function of these immunoregulatory cells remain unclear. We investigated the cellular basis for the generation of UV-induced Ts lymphocytes in both local and systemic models of immune suppression, and further examined the pleiotrophic function of these immunoregulatory cells. ^ We used Thy1.1 and Thy1.2 congenic mice in a draining lymph node (DLN) cell transfer model to analyze the role played by epidermal Langerhans cells in the generation of Ts cells. We demonstrate that T cells tightly adhered to antigen-presenting cells (APC) from UV-irradiated skin are the direct progenitors of UV-induced Ts lymphocytes. Our studies also reveal that UV-induced DNA-damage in the form of cyclobutyl pyrimidine dimers (CPD) in the epidermal APC is crucial for the altered maturation of these adherent T cells into Ts. ^ We used TCR transgenic mice in an adoptive transfer model and physically tracked the antigen-specific clones during immune responses in unirradiated versus UV-irradiated mice. We demonstrate that UV-induced Ts and effector TDTH cells share the same epitope specificity, indicating that both cell populations arise from the same clonal progenitors. UVR also causes profound changes in the localization and proliferation of antigen-specific T cells during an immune response. Antigen-specific T cells are not detectable in the DLNs of UV-irradiated mice after 3 days post-immunization, but are found in abundance in the spleen. In contrast, these clones continue to be found in the DLNs and spleens of normal animals several days post-immunization. Our studies also reveal that a Th2 cytokine environment is essential for the generation of Ts in UV-irradiated mice. ^ The third part of our study examined the pleiotrophic nature of UV-induced Ts. We used a model for the induction of both cellular and humoral responses to human gamma-globulin (HGG) to demonstrate that UV-induced Ts lymphocytes can suppress DTH as well as antibody responses. (Abstract shortened by UMI.) ^
Resumo:
The mechanical behavior of living murine T-lymphocytes was assessed by atomic force microscopy (AFM). A robust experimental procedure was developed to overcome some features of lymphocytes, in particular their spherical shape and non-adherent character. The procedure included the immobilization of the lymphocytes on amine-functionalized substrates, the use of hydrodynamic effects on the deflection of the AFM cantilever to monitor the approaching, and the use of the jumping mode for obtaining the images. Indentation curves were analyzed according to Hertz's model for contact mechanics. The calculated values of the elastic modulus are consistent both when considering the results obtained from a single lymphocyte and when comparing the curves recorded from cells of different specimens
Resumo:
The cellular form of the Prion protein (PrPC) is necessary for prion replication in mice. To determine whether it is also sufficient, we expressed PrP under the control of various cell- or tissue-specific regulatory elements in PrP knockout mice. The interferon regulatory factor-1 promoter/Eμ enhancer led to high PrP levels in the spleen and low PrP levels in the brain. Following i.p. scrapie inoculation, high prion titers were found in the spleen but not in the brain at 2 weeks and 6 months, showing that the lymphoreticular system by itself is competent to replicate prions. PrP expression directed by the Lck promoter resulted in high PrP levels on T lymphocytes only but, surprisingly, did not allow prion replication in the thymus, spleen, or brain following i.p. inoculation. A third transgenic line, which expressed PrP in the liver under the control of the albumin promoter/enhancer—albeit at low levels—also failed to replicate prions. These results show that expression of PrP alone is not sufficient to sustain prion replication and suggest that additional components are needed.
Resumo:
The experiments presented in this report were designed to specifically examine the role of CD4–major histocompatibility complex (MHC) class II interactions during T cell development in vivo. We have generated transgenic mice expressing class II molecules that cannot interact with CD4 but that are otherwise competent to present peptides to the T cell receptor. MHC class II expression was reconstituted in Aβ gene knock-out mice by injection of a transgenic construct encoding either the wild-type I-Aβb protein or a construct encoding a mutation designed to specifically disrupt binding to the CD4 molecule. We demonstrate that the mutation, EA137 and VA142 in the β2 domain of I-Ab, is sufficient to disrupt CD4–MHC class II interactions in vivo. Furthermore, we show that this interaction is critical for the efficient selection of a complete repertoire of mature CD4+ T helper cells as evidenced by drastically reduced numbers of conventional CD4+ T cells in animals expressing the EA137/VA142 mutant I-Ab and by the failure to positively select the transgenic AND T cell receptor on the mutated I-Ab. These results underscore the importance of the CD4–class II interaction in the development of mature peripheral CD4+ T cells.
Resumo:
Human umbilical cord blood T lymphocytes (CBTL) respond to primary allostimulation but they do not proliferate upon rechallenge with alloantigen. Using PKH-26-labeled cells created a proliferative block that was observed only in CBTL that have divided during primary stimulation (PKH-26dim) but not in unstimulated (PKH-26bright) CBTL. CBTL’s secondary unresponsiveness resembles anergy and can be overcome by treatment with phorbol myristate acetate (PMA) and ionomycin or by high doses (50–100 units/ml) of interleukin 2. Addition of interleukin 2 to the primary cultures does not prevent the induction of secondary unresponsiveness. Defective Ras activation is detected in PKH-26dim CBTL during secondary response to alloantigen or after antibody-mediated T cell receptor stimulation whereas Ras is activated and proliferation is induced in CBTL during primary alloantigenic stimulation. Upon stimulation with PMA plus ionomycin, PMA plus alloantigen, but not alloantigen plus ionomycin, Ras is activated in PKH-26dim CBTL, and the block in proliferation is overcome. Correction of PKH-26dim CBTL’s proliferative defect correlates with PMA-induced Ras activation, suggesting a defect in the signaling pathway leading to Ras. Ras-independent signals, necessary but not sufficient to induce PKH-26dim CBTL proliferation, are provided by alloantigen exposure, as evident by the ability of PMA plus alloantigen but not PMA alone to overcome the proliferative block. Functional signal transduction through CD28 in PKH-26dim CBTL is supported by detectable CD28-mediated PI-3 kinase activation after PKH-26dim CBTL’s exposure to alloantigen or CD28 cross-linking. These results suggest that defective activation of Ras plays a key role in PKH-26dim CBTL’s secondary unresponsiveness and point to a defect along the T cell receptor rather than the CD28 signaling pathway.
Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes
Resumo:
CD22 is a B cell-restricted glycoprotein involved in signal transduction and modulation of cellular activation. It is also an I-type lectin (now designated Siglec-2), whose extracellular domain can specifically recognize α2–6-linked sialic acid (Sia) residues. This activity is postulated to mediate intercellular adhesion and/or to act as a coreceptor in antigen-induced B cell activation. However, studies with recombinant CD22 indicate that the lectin function can be inactivated by expression of α2–6-linked Sia residues on the same cell surface. To explore whether this masking phenomenon affects native CD22 on B cells, we first developed a probe to detect the lectin activity of recombinant CD22 expressed on Chinese hamster ovary cells (which have no endogenous α2–6-linked Sia residues). This probe is inactive against CD22-positive B lymphoma cells and Epstein–Barr virus-transformed lymphoblasts which express high levels of α2–6-linked Sia residues. Enzymatic desialylation unmasks the CD22 lectin activity, indicating that endogenous Sia residues block the CD22 lectin-binding site. Truncation of the side chains of cell surface Sia residues by mild periodate oxidation (known to abrogate Sia recognition by CD22) also had this unmasking effect, indicating that the effects of desialylation are not due to a loss of negative charge. Normal resting B cells from human peripheral blood gave similar findings. However, the lectin is partially unmasked during in vitro activation of these cells. Thus, the lectin activity of CD22 is restricted by endogenous sialylation in resting B cells and may be transiently unmasked during in vivo activation, perhaps to modulate intercellular or intracellular interactions at this critical stage in the humoral response.
Resumo:
Rheumatoid arthritis (RA) is an autoimmune disease associated with the HLA-DR4 and DR1 alleles. The target autoantigen(s) in RA is unknown, but type II collagen (CII) is a candidate, and the DR4- and DR1-restricted immunodominant T cell epitope in this protein corresponds to amino acids 261–273 (CII 261–273). We have defined MHC and T cell receptor contacts in CII 261–273 and provide strong evidence that this peptide corresponds to the peptide binding specificity previously found for RA-associated DR molecules. Moreover, we demonstrate that HLA-DR4 and human CD4 transgenic mice homozygous for the I-Abβ0 mutation are highly susceptible to collagen-induced arthritis and describe the clinical course and histopathological changes in the affected joints.
Resumo:
By using antisense RNA, Lck-deficient transfectants of a T helper 2 (Th2) clone have been derived and shown to have a qualitative defect in the T cell receptor signaling pathway. A striking feature observed only in Lck-deficient T cells was the presence of a constitutively tyrosine-phosphorylated 32-kDa protein. In the present study, we provide evidence that this aberrantly hyperphosphorylated protein is p34cdc2 (cdc2) a key regulator of cell-cycle progression. Lck-deficient transfectants expressed high levels of cdc2 protein and its regulatory units, cyclins A and B. The majority of cdc2, however, was tyrosine-phosphorylated and therefore enzymatically inactive. The transfectants were significantly larger than the parental cells and contained 4N DNA. These results establish that a deficiency in Lck leads to a cell-cycle arrest in G2. Moreover, transfected cells were hypersusceptible to apoptosis when activated through the T cell receptor. Importantly, however, this hypersusceptibility was largely reversed in the presence of T cell growth factors. These findings provide evidence that, in mature T lymphocytes, cell-cycle progression through the G2–M check point requires expression of the Src-family protein tyrosine kinase, Lck. This requirement is Lck-specific; it is observed under conditions in which the closely related Fyn kinase is expressed normally, evincing against a redundancy of function between these two kinases.
Resumo:
Evolution of HIV-1 env sequences was studied in 15 seroconverting injection drug users selected for differences in the extent of CD4 T cell decline. The rates of increase of either sequence diversity at a given visit or divergence from the first seropositive visit were both higher in progressors than in nonprogressors. Viral evolution in individuals with rapid or moderate disease progression showed selection favoring nonsynonymous mutations, while nonprogressors with low viral loads selected against the nonsynonymous mutations that might have resulted in viruses with higher levels of replication. For 10 of the 15 subjects no single variant predominated over time. Evolution away from a dominant variant was followed frequently at a later time point by return to dominance of strains closely related to that variant. The observed evolutionary pattern is consistent with either selection against only the predominant virus or independent evolution occurring in different environments within the host. Differences in the level to which CD4 T cells fall in a given time period reflect not only quantitative differences in accumulation of mutations, but differences in the types of mutations that provide the best adaptation to the host environment.
Resumo:
Defects in lymphocyte apoptosis may lead to autoimmune disorders and contribute to the pathogenesis of type 1 diabetes. Lymphocytes of nonobese diabetic (NOD) mice, an animal model of autoimmune diabetes, have been found resistant to various apoptosis signals, including the alkylating drug cyclophosphamide. Using an F2 intercross between the apoptosis-resistant NOD mouse and the apoptosis-susceptible C57BL/6 mouse, we define a major locus controlling the apoptosis-resistance phenotype and demonstrate its linkage (logarithm of odds score = 3.9) to a group of medial markers on chromosome 1. The newly defined gene cannot be dissociated from Ctla4 and Cd28 and in fact marks a 20-centimorgan region encompassing Idd5, a previously postulated diabetes susceptibility locus. Interestingly, we find that the CTLA-4 (cytotoxic T lymphocyte-associated antigen 4) and the CD28 costimulatory molecules are defectively expressed in NOD mice, suggesting that one or both of these molecules may be involved in the control of apoptosis resistance and, in turn, in diabetes susceptibility.
Resumo:
The importance of CCAAT/enhancer binding proteins (C/EBPs) and binding sites for HIV-1 replication in primary macrophages, T cell lines and primary CD4+ T cells was examined. When lines overexpressing the C/EBP dominant-negative protein LIP were infected with HIV-1, replication occurred in Jurkat T cells but not in U937 promonocytes, demonstrating a requirement for C/EBP activators by HIV-1 only in promonocytes. Primary macrophages did not support the replication of HIV-1 harboring mutant C/EBP binding sites in the long terminal repeat but Jurkat, H9 and primary CD4+ T cells supported replication of wild-type and mutant HIV-1 equally well. Thus the requirement for C/EBP sites is also confined to monocyte/macrophages. The requirement for C/EBP proteins and sites identifies the first uniquely macrophage-specific regulatory mechanism for HIV-1 replication.
Resumo:
Split-thickness pig skin was transplanted on severe combined immunodeficient mice so that pig dermal microvessels spontaneously inosculated with mouse microvessels and functioned to perfuse the grafts. Pig endothelial cells in the healed grafts constitutively expressed class I and class II major histocompatibility complex molecules. Major histocompatibility complex molecule expression could be further increased by intradermal injection of pig interferon-γ (IFN-γ) but not human IFN-γ or tumor necrosis factor. Grafts injected with pig IFN-γ also developed a sparse infiltrate of mouse neutrophils and eosinophils without evidence of injury. Introduction of human peripheral blood mononuclear cells into the animals by intraperitoneal inoculation resulted in sparse perivascular mononuclear cell infiltrates in the grafts confined to the pig dermis. Injection of pig skin grafts on mice that received human peripheral blood mononuclear cells with pig IFN-γ (but not human IFN-γ or heat-inactivated pig IFN-γ) induced human CD4+ and CD8+ T cells and macrophages to more extensivley infiltrate the pig skin grafts and injure pig dermal microvessels. These findings suggest that human T cell-mediated rejection of xenotransplanted pig organs may be prevented if cellular sources of pig interferon (e.g., passenger lymphocytes) are eliminated from the graft.
Resumo:
Recent studies indicate that CTLA-4 interaction with B7 ligands transduces an inhibitory signal to T lymphocytes. Mice homozygous for a null mutation in CTLA-4 have provided the most dramatic example of the functional importance of CTLA-4 in vivo. These animals develop a fatal lymphoproliferative disorder and were reported to have an increase in CD4+ and CD8+ thymocytes and CD4−CD8− thymocytes, and a decrease in CD4+CD8+ thymocytes. Based on these observations, it was proposed that CTLA-4 is necessary for normal thymocyte development. In this study, CTLA-4-deficient mice carrying an insertional mutation into exon 3 of the ctla-4 gene were generated. Although these mice display a lymphoproliferative disorder similar to previous reports, there was no alteration in the thymocyte profiles when the parathymic lymph nodes were excluded from the thymi. Further, thymocyte development was normal throughout ontogeny and in neonates, and there was no increase in thymocyte production. Finally, T cell antigen receptor signaling, as assessed by proximal and distal events, was not altered in thymocytes from CTLA-4−/− animals. Collectively, these results clearly demonstrate that the abnormal T cell expansion in the CTLA-4-deficient mice is not due to altered thymocyte development and suggest that the apparent altered thymic phenotype previously described was due to the inclusion of parathymic lymph nodes and, in visibly ill animals, to the infiltration of the thymus by activated peripheral T cells. Thus it appears that CTLA-4 is primarily involved in the regulation of peripheral T cell activation.
Resumo:
Correlates of virus load and characteristics of virus-producing cells in tonsillar tissue were investigated. Our results suggest that when less than 1:100 tonsillar CD4+ T cells from individuals infected with HIV type-1 (HIV-1) contain replication competent provirus, the level of CD4+ T cells in tonsils is comparable to that observed in uninfected individuals. Virus load at or above this level was associated with low CD4 cell numbers in tonsillar tissue. Only a few percent of all infected T cells in tonsillar tissue were active virus producers, with minor differences observed between individuals. Plasma viremia was found to correlate with infectious virus load in tonsillar tissue. With less than 1:1,000 of CD4 cells in lymphoid tissues being involved in active virus production, direct cytopathic effect by HIV-1 on infected CD4 cells is unlikely to fully explain the immunodeficiency seen in AIDS.