935 resultados para CATIONIC SURFACTANTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Com o objetivo de avaliar a eficiência da agregação de surfatantes ao herbicida glyphosate analisou-se a tensão superficial de diferentes soluções de pulverização contendo o hebicida e o surfatante, e a área de molhamento destas soluções nas folhas de Cyperus rotundus L.. Foram desenvolvidos métodos para avaliação da tensão superficial e da área de molhamento. Para analisar a tensão fez-se pesagens das gotas formadas na extremidade de uma bureta, com os seguintes tratamentos combinados de forma fatorial (3 x 5 x 11): 3 surfatantes (Extravon, Aterbane e Silwet L-77), 5 concentrações do herbicida, produto comercial Roundup (0; 1; 2; 3,5 e 5 %) e 11 concentrações de cada surfatantes (0; 0,005; 0,01; 0,02; 0,05; 0,1; 0,2; 0,5; 1; 2 e 3,5 %), num total de 165 tratamentos. Para avaliar a área de molhamento nas folhas de tiririca aplicou-se gotas de 0,48 .l. Os dados foram ajustados pelo modelo de Mitscherlich e, observou-se que para o surfatante Extravon que a eficiência decrescia gradativamente a medida em que aumentava a concentração do herbicida; para o Aterbane a eficiência foi reduzida apenas em baixas concentrações; já o surfatante Silwet L-77 apresentou eficiência bem superior aos demais e sua eficiência foi pouco alterada com a adição herbicida. Houve uma correlação positiva entre área de molhamento e tensão superficial. Concluiu-se, ainda, que não basta um surfatante reduzir a tensão superficial da água destilada, para que possa ser recomendado seu uso agrícola, assim, o surfatante deve ser submetido a testes preliminares com os defensivos em que serão conjugados para posterior recomendação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of new fuels is an important field of scientific and technological activities, since much of the energy consumed in the world is obtained from oil, coal and natural gas, and these sources are limited and not renewable. Recently it has assessed the employment of microemulsions as an alternative for obtaining fuel isotropic between phases originally not miscible. Among many advantages, emphasizes the application of substances that provide the reduction of levels of emissions compared to fossil fuels. Thus, this work was a study of various microemulsified systems, aiming to check the performance of the winsor regions front of the use of surfactants: RENEX 18 → 150, UNITOL L-60 → L-100 and AMIDA 60, together with structure of esters from soybean and castor bean oils. From the results it were chosen four systems to physico-chemical analyzes: System I RENEX 60, Soil bean oil, methylic ester (EMOS) and water; System II RENEX 60/AMIDA 60, EMOS and water; System III RENEX 70, mamona oil methylic ester (EMOM) and water and System IV RENEX 95, EMOM and water. The tests of physico-chemical characterization and study of temperature increase were done with nine points with different compositions in a way to include the interest area (microemulsion W/O). After this study, was conducted a modeling to predict the viscosity, the property is more varied as function of compositions systems changes. The best results were the systems II and IV with a temperature stability above 60°C. The system I had its physico-chemical characterization very similar to a fossil fuel. The system II was the best one due to its corrosivity be stable. In the modeling the four systems had shown good, with an error that varied between 5 and 18%, showing to be possible the viscosity prediction from the composition of the system. The effects the microemulsion and the engine´s performance with the microemulsion were also avaliated. The tests were performed in a cycle-diesel engine. The potency and consumption were analysed. Results show a slight increase the rendiment fuel compared with the conventional as well as a decrease in specific consumption

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of paraffin deposits is common in the petroleum industry during production, transport and treatment stages. It happens due to modifications in the thermodynamic variables that alter the solubility of alkanes fractions present in petroleum. The deposition of paraffin can provoke significant and growing petroleum losses, arriving to block the flow, hindering to the production. This process is associated with the phases equilibrium L-S and the stages and nucleation, growth and agglomeration the crystals. That process is function of petroleum intrinsic characteristics and temperature and pressure variations, during production. Several preventive and corrective methods are used to control the paraffin crystallization, such as: use of chemical inhibitors, hot solvents injection, use of termochemistry reactions, and mechanical removal. But for offshore exploration this expensive problem needs more investigation. Many studies have been carried through Wax Appearance Temperature (WAT) of paraffin; therefore the formed crystals are responsible for the modification of the reologics properties of the oil, causing a lot off operational problems. From the determination of the WAT of a system it is possible to affirm if oil presents or not trend to the formation of organic deposits, making possible to foresee and to prevent problems of wax crystallization. The solvent n-paraffin has been widely used as fluid of perforation, raising the production costs when it is used in the removal paraffin deposits, needing an operational substitute. This study aims to determine the WAT of paraffin and the interference off additives in its reduction, being developed system paraffin/solvent/surfactant that propitiates the wax solubilization. Crystallization temperatures in varied paraffin concentrations and different solvents were established in the first stage of the experiments. In the second stage, using the methodology of variation of the photoelectric signal had been determined the temperature of crystallization of the systems and evaluated the interferences of additives to reduction of the WAT. The experimental results are expressed in function of the variations of the photoelectric signals during controlled cooling, innovating and validating this new methodology to determine WAT, relatively simple with relation the other applied that involve specific equipments and of high cost. Through the curves you differentiate of the results had been also identified to the critical stages of growth and agglomeration of the crystals that represent to the saturation of the system, indicating difficulties of flow due to the increase of the density

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crude glycerine is a raw material that can be used in a wide variety of products. Even with all the impurities inherent in the process of being obtained, the crude glycerin is already in a marketable product. However, the market is much more favorable to the commercialization of purified glycerine. The glycerin is a byproduct gotten from the process of transesterification of waste oils and fats in the production of biodiesel. More recently, the deployment of the new Federal Law of Brazil, related to the implementation of energy resources, forces, from 2008, the increase of 2% biodiesel in diesel common with prospects for 5% (B5). Therefore, it is indispensable that new routes of purification as well as new markets are developed. The objective of this work was to purify, through ion exchange, the crude glycerin, obtained from the reaction of transesterification of cottonseed oil. The cottonseed oil was characterized as the fatty acid composition and physical-chemical properties. The process of ion exchange was conducted in batch. In this process were used strong cation, low anion resins and a mixed resin used to de-ionize water. The purified glycerin was characterized as the content of metals. Tests were performed with activated charcoal adsorption, and for this, it was made tests of time contact with coal as well as quantity of coal used. The time of activation, the amount of the activation solution, the contact time of the glycerol solution in resins, the amount and type of resin applied were evaluated. Considering the analysis made with activated charcoal, when the glycerin solution was treated using the resins individually it was observed that in the conditions for treatment with 10 g of resin, 5 hours of contact with each resin and 50 mL of glycerin solution, its conductivity decreased to a cationic resin, increased to the anionic resin and had a variable value with respect to resin mixed. In the treatment in series, there was a constant decrease in the conductivity of the solution of glycerin. Considering two types of treatment, in series and individually, the content of glycerol in glycerin pre-purified solution with the different resins varied from 12,46 to 29.51% (diluted solution). In analysis performed without the use of activated charcoal, the behavior of the conductivity of the solution of glycerin were similar to results for treatment with activated charcoal, both in series as individually. The solution of glycerin pre-purified had a glycerol content varying from 8.3 to 25.7% (diluted solution). In relation to pH, it had a behavior in accordance with the expected: acid for the glycerin solution treated with cationic resin, basic when the glycerin solution was treated with the anionic resin and neutral when treated with the mixed resin, independent of the kind of procedure used (with or without coal, resins individually or in series). In relation to the color of the glycerin pre-purified solution, the resin that showed the best result was the anionic (colorless), however this does not mean that the solution is more in pure glycerol. The chromatographic analysis of the solutions obtained after the passage through the resins indicated that the treatment was effective by the presence of only one component (glycerol), not considering the solvent of the analysis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petroleum can be associated or not with natural gas, but in both cases water is always present in its formation. The presence of water causes several problems, such as the difficulty of removing the petroleum from the reservoir rock and the formation of waterin-oil and oil-in-water emulsions. The produced water causes environmental problems, which should be solved to reduce the effect of petroleum industry in the environment. The main objective of this work is to remove simultaneously from the produced water the dispersed petroleum and dissolved metals. The process is made possible through the use of anionic surfactants that with its hydrophilic heads interacts with ionized metals and with its lipophilic tails interacts with the oil. The studied metals were: calcium, magnesium, barium, and cadmium. The surfactants used in this research were derived from: soy oil, sunflower oil, coconut oil, and a soap obtained from a mixture of 5wt.% coconut oil and 95wt.% animal fat. It was used a sample of produced water from Terminal de São Sebastião, São Paulo. As the concentration of the studied metals in produced water presented values close to 300 mg/L, it was decided to use this concentration as reference for the development of this research. Molecular absorption and atomic absorption spectroscopy were used to determine petroleum and metals concentrations in the water sample, respectively. A constant pressure filtration system was used to promote the separation of solid and liquid phases. To represent the behavior of the studied systems it was developed an equilibrium model and a mathematical one. The obtained results showed that all used surfactants presented similar behavior with relation to metals extraction, being selected the surfactant derived from soy oil for this purpose. The values of the partition coefficients between the solid and liquid phases " D " for the studied metals varied from 0.2 to 1.1, while the coefficients for equilibrium model " K " varied from 0.0002 and 0.0009. The removal percentile for oil with all metals associated was near 100%, showing the efficiency of the process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increasing industrialization of the planet caused by globalization, it has become increasingly common to search for highly resistant and durable materials for many diverse branches of activities. Thus, production and demand for materials that meet these requirements have constantly increased with time. In view of this, stainless steel is presented as one of the materials which are suitable applications, due to many features that are interesting for several segments of the industry. Concerns of oil companies over heavy oil reservoirs have grown steadily for the last decades. Rheological properties of these oils impair their transport in conventional flow systems. This problem has created the need to develop technologies to improve flow and transport, reducing operation costs so as to enable oil production in the reservoir. Therefore, surfactant-based chemical systems are proposed to optimize transport conditions, effected by reduction of interfacial tensions, thereby enhancing the flow of oil in ducts and reducing load losses by friction. In order to examine such interactions, a study on the wettability of metallic surfaces has been undertaken, represented by measuring of contact angle of surfactant solutions onto flat plates of 304 stainless steel. Aqueous solutions of KCl, surfactants and mixtures of surfactants, with linear and aromatic hydrocarbon chain and ethoxylation degrees ranging between 20 to 100, have been tested. The wettability was assessed by means of a DSA 100 krüss goniometer. The influence of roughness on the wettability was also investigated by machining and polished the stainless steel plates with sandpapers of references ranging between 100 of 1200. The results showed that sanding and polishing plates result in decrease of wettability. As for the solutions, they have provided better wettability of the stainless steel than the KCl solutions tested. It was also been concluded that surfactant mixtures is an option to be considered, since they promote interactions that generate satisfactory contact angles for a good wettability on the stainless steel plate. Another conclusion refers to the influence of the ethoxylation degree of the nonionic surfactant molecules on wettability. It has been observed that contact angles decrease with decreasing ethoxylation degrees. This leads us to conclude that molecules with higher ethoxylation degree, being more hydrophobic, decrease the interaction of water with the ducts, thereby reducing friction and improving the flow

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitable surfactant was the EO 7 due to the lower reagent onsumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonionic surfactants are composed of substances whose molecules in solution, does not ionize. The solubility of these surfactants in water due to the presence of functional groups that have strong affinity for water. When these surfactants are heated is the formation of two liquid phases, evidenced by the phenomenon of turbidity. This study was aimed to determine the experimental temperature and turbidity nonilfenolpoliethoxyled subsequently perform a thermodynamic modeling, considering the models of Flory-Huggins and the empirical solid-liquid equilibrium (SLE). The method used for determining the turbidity point was the visual method (Inoue et al., 2008). The experimental methodology consisted of preparing synthetic solutions of 0,25%, 0,5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 12,5%, 15%, 17% and 20% by weight of surfactant. The nonionic surfactants used according to their degree of ethoxylation (9.5, 10, 11, 12 and 13). During the experiments the solutions were homogenized and the bath temperature was gradually increased while the turbidity of the solution temperature was checked visually Inoue et al. (2003). These temperature data of turbidity were used to feed the models evaluated and obtain thermodynamic parameters for systems of surfactants nonilfenolpoliethoxyled. Then the models can be used in phase separation processes, facilitating the extraction of organic solvents, therefore serve as quantitative and qualitative parameters. It was observed that the solidliquid equilibrium model (ESL) was best represented the experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pegmatite rocks in Rio Grande do Norte are responsible for much of the production of industrial minerals like quartz and feldspar. Quartz and feldspar are minerals from pegmatite which may occur in pockets with metric to centimetric dimensions or as millimetric to sub millimetric intergrowths. The correct physical liberation of the mineral of interest, in case of intergrowths, requires an appropriate particle size, acquired by size reduction operations. The method for treating mineral which has a high efficiency fines particles recovery is flotation. The main purpose of the present study is to evaluate the recovery of quartz and potassium feldspar using cationic diamine and quaternary ammonium salt as collectors by means of dissolved air flotation DAF. The tests were performed based on a central composite design 24, by which the influence of process variables was statistically verified: concentration of the quaternary ammonium salt and diamine collectors, pH and conditioning time. The efficiency of flotation was calculated from the removal of turbidity of the solution. Results of maximum flotation efficiency (60%) were found in the level curves, plotted in conditions of low concentrations of collectors (1,0 x 10-5 mol.L-1). These high flotation efficiencies were obtained when operating at pH 4 to 8 with conditioning time ranging from 3 to 5 minutes. Thus, the results showed that the process variables have played important roles in the dissolved air flotation process concerning the flotability of the minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of oil produced water and its implications are continually under investigation and several questions are related to this subject. In the Northeast Region Brazil, the onshore reservoirs are, in its majority, mature oil fields with high production of water. As this oil produced water has high levels of oil, it cannot be directly discarded into the environment because it represents a risk for contamination of soil, water, and groundwater, or even may cause harm to living bodies. Currently, polyelectrolytes that promote the coalescence of the oil droplets are used to remove the dispersed oil phase, enhancing the effectiveness of the flotation process. The non-biodegradability and high cost of polyelectrolytes are limiting factors for its application. On this context, it is necessary to develop studies for the search of more environmentally friendly products to apply in the flotation process. In this work it is proposed the modeling of the flotation process, in a glass column, using surfactants derived from vegetal oils to replace the polyelectrolytes, as well as to obtain a model that represents the experimental data. In addition, it was made a comparative study between the models described in the literature and the one developed in this research. The obtained results showed that the developed model presented high correlation coefficients when fitting the experimental data (R2 > 0.98), thus proving its efficiency in modeling the experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of effluent from the finishing process in textile industry is a serious environmental problem and turned into an object of study in several scientific papers. Contamination with dyes and the presences of substances that are toxic to the environment characterize this difficult treatment effluent. Several processes have already been evaluated to remove and even degrade such pollutants are examples: coagulation-flocculation, biological treatment and advanced oxidative processes, but not yet sufficient to enable the recovery of dye or at least of the recovery agent. An alternative to this problem is the cloud point extraction that involves the application of nonionic surfactants at temperatures above the cloud point, making the water a weak solvent to the surfactant, providing the agglomeration of those molecules around the dyes molecules by affinity with the organic phase. After that, the formation of two phases occurred: the diluted one, poor in dye and surfactant, and the other one, coacervate, with higher concentrations of dye and surfactants than the other one. The later use of the coacervate as a dye and surfactant recycle shows the technical and economic viability of this process. In this paper, the cloud point extraction is used to remove the dye Reactive Blue from the water, using nonionic surfactant nonyl phenol with 9,5 etoxilations. The aim is to solubilize the dye molecules in surfactant, varying the concentration and temperature to study its effects. Evaluating the dye concentration in dilute phase after extraction, it is possible to analyze thermodynamic variables, build Langmuir isotherms, determine the behavior of the coacervate volume for a surfactant concentration and temperature, the distribution coefficient and the dye removal efficiency. The concentration of surfactant proved itself to be crucial to the success of the treatment. The results of removal efficiency reached values of 91,38%, 90,69%, 89,58%, 87,22% and 84,18% to temperatures of 65,0, 67,5, 70,0, 72,5 and 75,0°C, respectively, showing that the cloud point extraction is an efficient alternative for the treatment of wastewater containing Reactive Blue

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper is one of the most used metals in platingprocesses of galvanic industries. The presence of copper, a heavy metal, in galvanic effluents is harmful to the environment.The main objective of this researchwas the removal ofcopperfromgalvanic effluents, using for this purpose anionic surfactants. The removal process is based on the interaction between the polar head group of the anionic surfactant and the divalent copper in solution. The surfactants used in this study were derived from soybean oil (OSS), coconut oil (OCS), and sunflower oil (OGS). It was used a copper synthetic solution (280 ppm Cu+2) simulating the rinse water from a copper acid bath of a galvanic industry. It were developed 23and 32 factorial designs to evaluate the parameters that have influence in theremoval process. For each surfactant (OSS, OCS, and OGS), the independent variables evaluated were: surfactant concentration (1.25 to 3.75 g/L), pH (5 to 9) and the presence of an anionic polymer (0 to 0.0125 g/L).From the results obtained in the 23 factorial design and in the calculus for estimatingthe stoichiometric relationship between surfactants and copper in solution, it were developed new experimental tests, varying surfactant concentration in the range of 1.25 to 6.8 g/L (32 factorial design).The results obtained in the experimental designs were subjected to statistical evaluations to obtain Pareto charts and mathematical modelsfor Copper removal efficiency (%). The statistical evaluation of the 23 and 32factorial designs, using saponifiedcoconut oil (OCS), presented the mathematical model that best described the copper removal process.It can be concluded that OCS was the most efficient anionic surfactant, removing 100% of the copper present in the synthetic galvanic solution

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avaliaram-se os efeitos das relações (Ca+Mg)/K do solo sobre o desenvolvimento, absorção de nutrientes e produção de bulbos na cultura do alho cv. Roxo Pérola de Caçador conduzindo experimento no período de maio a outubro de 1990 em vasos de cimento amianto contendo 50 kg de terra, em casa de vegetação telada. Os tratamentos consistiram de aplicações de doses de potássio visando atingir relações (Ca+Mg)/K no complexo de troca do solo próximas a 170; 50; 35; 20; 12,5; 7,5; 5,0; 3,5 e 2,0. Verificaram-se aumentos na concentração de K, Ca e Mg na solução do solo proporcionais à elevação do teor de K trocável. As concentrações foliares de K e Mn diminuiram proporcionalmente às relações (Ca+Mg)/K do solo, ocorrendo o inverso com as concentrações de Ca e Mg. A absorção dos demais nutrientes não foi influenciada pelos tratamentos. A relação (Ca+Mg)/K influenciou a produção de bulbos e a altura das plantas durante todo o ciclo, sendo que os menores valores desta relação, caracterizados por excesso de K, inibiram mais o desenvolvimento e a produção de bulbos. A porcentagem de K no complexo de troca, seguida da relação K/(Ca+Mg)1/2 e do K trocável do solo foram os índices que melhor correlacionaram com a produção de bulbos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Naphthenic lubricating oils are used in transformers with the purpose of promoting electrical insulation and dissipating heat. The working temperature range of these oils typically lies between 60°C and 90°C and their useful life is 40 years in average. In that temperature range, the oils are decomposed during operation, whereby a small fraction of polar compounds are formed. The presence of these compounds may induce failure and loss of physical, chemical and electrical properties of the oil, thus impairing the transformer operation. By removing these contaminants, one allows the oxidized insulating oil to be reused without damaging the equipment. In view of this, an investigation on the use of surfactants and microemulsions as extracting agents, and modified diatomite as adsorbent, has been proprosed in this work aiming to remove polar substances detected in oxidized transformer oils. The extraction was carried out by a simple-contact technique at room temperature. The system under examination was stirred for about 10 minutes, after which it was allowed to settle at 25°C until complete phase separation. In another experimental approach, adsorption equilibrium data were obtained by using a batch system operating at temperatures of 60, 80 and 100°C. Analytical techniques involving determination of the Total Acidity Number (TAN) and infrared spectrophotometry have been employed when monitoring the decomposition and recovery processes of the oils. The acquired results indicated that the microemulsion extraction system comprising Triton® X114 as surfactant proved to be more effective in removing polar compounds, with a decrease in TAN index from 0.19 to 0.01 mg KOH/g, which is consistent with the limits established for new transformer oils (maximal TAN = 0.03 mg KOH/g). In the adsorption studies, the best adsorption capacity values were as high as 0.1606 meq.g/g during conventional adsoprtion procedures using natural bauxite, and as high as 0.016 meq.g/g for the system diatomite/Tensiofix® 8426. Comparatively in this case, a negative effect could be observed on the adsorption phenomenon due to microemulsion impregnation on the surface of the diatomite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During natural gas processing, water removal is considered as a fundamental step in that combination of hydrocarbons and water favors the formation of hydrates. The gas produced in the Potiguar Basin (Brazil) presents high water content (approximately 15000 ppm) and its dehydration is achieved via absorption and adsorption operations. This process is carried out at the Gas Treatment Unit (GTU) in Guamaré (GMR), in the State of Rio Grande do Norte. However, it is a costly process, which does not provide satisfactory results when water contents as low as 0.5 ppm are required as the exit of the GTU. In view of this, microemulsions research is regarded as an alternative to natural gas dehydration activities. Microemulsions can be used as desiccant fluids because of their unique proprieties, namely solubilization enhancement, reduction in interfacial tensions and large interfacial area between continuous and dispersed phases. These are actually important parameters to ensure the efficiency of an absorption column. In this work, the formulation of the desiccant fluid was determined via phases diagram construction, employing there nonionic surfactants (RDG 60, UNTL L60 and AMD 60) and a nonpolar fluid provided by Petrobras GMR (Brazil) typically comprising low-molecular weight liquid hydrocarbons ( a solvent commonly know as aguarrás ). From the array of phases diagrams built, four representative formulations have been selected for providing better results: 30% RDG 60-70% aguarrás; 15% RDG 60-15% AMD 60-70% aguarrás, 30% UNTL L60-70% aguarrás, 15% UNTL L60-15% AMD 60-70% aguarrás. Since commercial natural gas is already processed, and therefore dehydrated, it was necessary to moister some sample prior to all assays. It was then allowed to cool down to 13ºC and interacted with wet 8-12 mesh 4A molecular sieve, thus enabling the generation of gas samples with water content (approximately 15000 ppm). The determination of the equilibrium curves was performed based on the dynamic method, which stagnated liquid phase and gas phase at a flow rate of 200 mL min-1. The hydrodynamic study was done with the aim of established the pressure drop and dynamic liquid hold-up. This investigation allowed are to set the working flow rates at 840 mL min-1 for the gas phase and 600 mLmin-1 for the liquid phase. The mass transfer study indicated that the system formed by UNTL L60- turpentine-natural gas the highest value of NUT