988 resultados para C5a Antagonist
Resumo:
The effect of vasopressin released during Finnish sauna on blood pressure, heart rate and skin blood flow was investigated in 12 healthy volunteers. Exposure to the hot air decrease body weight by 0.6 to 1.25 kg (mean = 0.8 kg, P less than 0.001). One hour after the end of the sauna sessions, plasma vasopressin was higher (1.7 +/- 0.2 pg/ml, P less than 0.01 mean +/- SEM) than before the sauna (1.0 +/- 0.1 pg/ml). No simultaneous change in plasma osmolality, plasma renin activity, plasma norepinephrine, epinephrine, cortisol, aldosterone, beta-endorphin and metenkephalin levels was observed. Despite the slight sauna-induced elevation in circulating vasopressin, intravenous injection of the specific vascular vasopressin antagonist d(CH2)5Tyr(Me)AVP (5 micrograms/kg) 1 h after the sauna had no effect on blood pressure, heart rate or skin blood flow. These data suggest that vasopressin released into the circulation during a sauna session reaches concentrations which are not high enough to interfere directly with vascular tone.
Induction of systemic resistance in tomato by the autochthonous phylloplane resident Bacillus cereus
Resumo:
The objective of this work was to verify if the induced resistance mechanism is responsible for the capacity of a phylloplane resident bacteria (Bacillus cereus), isolated from healthy tomato plants, to control several diseases of this crop. A strain of Pseudomonas syringae pv. tomato was used as the challenging pathogen. The absence of direct antibiosis of the antagonist against the pathogen, the significant increase in peroxidases activity in tomato plants exposed to the antagonist and then inoculated with the challenging pathogen, as well as the character of the protection, are evidences wich suggest that biocontrol efficiency presented by the antagonist in previous works might be due to induced systemic resistance (ISR).
Resumo:
Acute blockade of the renin-angiotensin system with the parenterally active angiotensin II antagonist saralasin has been shown to effectively lower blood pressure in a large fraction of patients with essential hypertension and to improve hemodynamics in some patients with congestive heart failure. It is now possible to antagonize chronically angiotensin II at its receptor using the non-peptide angiotensin II inhibitor losartan (DuP 753, MK 954). When administered by mouth, this compound induces a dose-dependent inhibition of the pressor response to exogenous angiotensin II. This effect is closely related to circulating levels of the active metabolite E3174. Preliminary studies performed in hypertensive patients suggest that losartan has a blood pressure lowering action equivalent to that of an ACE inhibitor. Whether this compound will compare favorably with ACE inhibitors requires however further investigation.
Resumo:
Sequential conversion of estradiol (E) to 2/4-hydroxyestradiols and 2-/4-methoxyestradiols (MEs) by CYP450s and catechol-O-methyltransferase, respectively, contributes to the inhibitory effects of E on smooth muscle cells (SMCs) via estrogen receptor-independent mechanisms. Because medroxyprogesterone (MPA) is a substrate for CYP450s, we hypothesized that MPA may abrogate the inhibitory effects of E by competing for CYP450s and inhibiting the formation of 2/4-hydroxyestradiols and MEs. To test this hypothesis, we investigated the effects of E on SMC number, DNA and collagen synthesis, and migration in the presence and absence of MPA. The inhibitory effects of E on cell number, DNA synthesis, collagen synthesis, and SMC migration were significantly abrogated by MPA. For example, E (0.1micromol/L) reduced cell number to 51+/-3.6% of control, and this inhibitory effect was attenuated to 87.5+/-2.9% by MPA (10 nmol/L). Treatment with MPA alone did not alter any SMC parameters, and the abrogatory effects of MPA were not blocked by RU486 (progesterone-receptor antagonist), nor did treatment of SMCs with MPA influence the expression of estrogen receptor-alpha or estrogen receptor-beta. In SMCs and microsomal preparations, MPA inhibited the sequential conversion of E to 2-2/4-hydroxyestradiol and 2-ME. Moreover, as compared with microsomes treated with E alone, 2-ME formation was inhibited when SMCs were incubated with microsomal extracts incubated with E plus MPA. Our findings suggest that the inhibitory actions of MPA on the metabolism of E to 2/4-hydroxyestradiols and MEs may negate the cardiovascular protective actions of estradiol in postmenopausal women receiving estradiol therapy combined with administration of MPA.
Resumo:
Whether adenosine, a crucial regulator of the developing cardiovascular system, can provoke arrhythmias in the embryonic/fetal heart remains controversial. Here, we aimed to establish a mechanistic basis of how an adenosinergic stimulation alters function of the developing heart. Spontaneously beating hearts or dissected atria and ventricle obtained from 4-day-old chick embryos were exposed to adenosine or specific agonists of the receptors A(1)AR (CCPA), A(2A)AR (CGS-21680) and A(3)AR (IB-MECA). Expression of the receptors was determined by quantitative PCR. The functional consequences of blockade of NADPH oxidase, extracellular signal-regulated kinase (ERK), phospholipase C (PLC), protein kinase C (PKC) and L-type calcium channel (LCC) in combination with adenosine or CCPA, were investigated in vitro by electrocardiography. Furthermore, the time-course of ERK phosphorylation was determined by western blotting. Expression of A(1)AR, A(2A)AR and A(2B)AR was higher in atria than in ventricle while A(3)AR was equally expressed. Adenosine (100μM) triggered transient atrial ectopy and second degree atrio-ventricular blocks (AVB) whereas CCPA induced mainly Mobitz type I AVB. Atrial rhythm and atrio-ventricular propagation fully recovered after 60min. These arrhythmias were prevented by the specific A(1)AR antagonist DPCPX. Adenosine and CCPA transiently increased ERK phosphorylation and induced arrhythmias in isolated atria but not in ventricle. By contrast, A(2A)AR and A(3)AR agonists had no effect. Interestingly, the proarrhythmic effect of A(1)AR stimulation was markedly reduced by inhibition of NADPH oxidase, ERK, PLC, PKC or LCC. Moreover, NADPH oxidase inhibition or antioxidant MPG prevented both A(1)AR-mediated arrhythmias and ERK phosphorylation. These results suggest that pacemaking and conduction disturbances are induced via A(1)AR through concomitant stimulation of NADPH oxidase and PLC, followed by downstream activation of ERK and PKC with LCC as possible target.
Resumo:
The objective of this work was to investigate possible modes of action of the yeast Cryptococcus magnus in controlling anthracnose (Colletotrichum gloeosporioides) on post harvested papaya fruits. Scanning electron microscopy was used to analyze the effect of the yeast on inoculations done after harvest. Results showed that C. magnus is able to colonize wound surfaces much faster than the pathogen, outcompeting the later for space and probably for nutrients. In addition, C. magnus produces a flocculent matrix, which affects hyphae integrity. The competition for space and the production of substances that affect hyphae integrity are among the most important modes of action of this yeast.
Resumo:
Mineralocorticoid signaling pathway plays a pivotal role in cardiovascular physiopathology. Evidences from clinical and experimental studies have linked mineralocorticoid hormones with cardiovascular morbiditiy and mortality. Thus, antagonist of the mineralocorticoid receptor (AMR) has reappeared. In addition, a novel mineralocorticoid receptor antagonist has been developped, named eplerenone, which lack the side effect of former ARMs as gynecomastia. Based on two studies named RALES et EPHESUS, guidelines of the european and american societies of cardiology recommend the use of ARMs as a treatment for cardiac failure NYHA III and IV, and post-infarct cardiac failure (ejection fraction < 40%).
Resumo:
The objective of this work was to investigate the influence of 1-methylcyclopropene (1-MCP) at 300 nL L-1 on activities of cell wall hidrolytic enzymes and pectin breakdown changes which Sapodilla (Manilkara zapota cv. Itapirema 31) cell wall undergoes during ripening. Sapodilla were treated with ethylene antagonist 1-MCP at 300 nL L-1 for 12 hours and then, stored under a modified atmosphere at 25º C for 23 days. Firmness, total and soluble pectin and cell wall enzymes were monitored during storage. 1-MCP at 300 nL L-1 for 12 hours delayed significantly softening of sapodilla for 11 days at 25º C. 1-MCP postharvest treatment affected the activities of cell wall degrading enzymes pectinmethylesterase and polygalacturonase and completely suppressed increases in beta-galactosidase for 8 days, resulting in less pectin solubilization. Beta-galactosidase seems relevant to softening of sapodilla and is probably responsible for modification of both pectin and xyloglucan-cellulose microfibril network.
Resumo:
Introduction: The overeruption of upper molars due to the premature loss of antagonist teeth can be treated with the help of miniscrews. The aim of this study was to evaluate the movement of a typodont molar according to the biomechanical approach used with miniscrews. Study design: The study was conducted with four plaster models filled with typodont wax. In each model we used one absolute anchorage on the palatal side and another on the buccal side in different positions, thus generating four different biomechanical systems. A force of 150 g was applied to each side of the resin tooth. Periapical radiographs were taken preintrusion and immediately after completion of the intrusion. Photographs were taken in both the sagittal and occlusal planes every 3 min. The radiographic films and photographs were measured and compared. Results: A vertical movement of the molar was observed in all the models, with system 4 showing the greatest movement. Rotation in the occlusal plane only occurred in system 2, while in system 1 there was a change in the axial axis of 37 degrees. Conclusions: The anchorage site and the combination of forces applied may determine the resulting tooth movement
Resumo:
Stable protein-DNA complexes can be assembled in vitro at the 5' end of Xenopus laevis vitellogenin genes using extracts of nuclei from estrogen-induced frog liver and visualized by electron microscopy. Complexes at the three following sites can be identified on the gene B2: the transcription initiation site, the estrogen responsive element (ERE) and in the first intron. The complex at the transcription initiation site is stabilized by dinucleotides and thus represents a ternary transcription complex. The formation of the complexes at the two other sites is enhanced by estrogen and is reduced by tamoxifen, an antagonist of estrogen, while this latter effect is reversed by adding an excess of hormone. No sequence homology is apparent between the site containing the ERE and the binding site in intron I and functional tests in MCF-7 cells suggest that these two sites are not equivalent. Finally, we made use of previously characterized deletion mutants of the 5' flanking region of the gene B1, a close relative of the gene B2, to demonstrate that the 13-bp palindromic core element of the ERE is involved in the formation of the complexes observed upstream of the transcription initiation site.
Resumo:
Vascular calcification is a hallmark of advanced atherosclerosis. Here we show that deletion of the nuclear receptor PPARγ in vascular smooth muscle cells of low density lipoprotein receptor (LDLr)-deficient mice fed an atherogenic diet high in cholesterol, accelerates vascular calcification with chondrogenic metaplasia within the lesions. Vascular calcification in the absence of PPARγ requires expression of the transmembrane receptor LDLr-related protein-1 in vascular smooth muscle cells. LDLr-related protein-1 promotes a previously unknown Wnt5a-dependent prochondrogenic pathway. We show that PPARγ protects against vascular calcification by inducing the expression of secreted frizzled-related protein-2, which functions as a Wnt5a antagonist. Targeting this signalling pathway may have clinical implications in the context of common complications of atherosclerosis, including coronary artery calcification and valvular sclerosis.
Resumo:
Despite the fact that mineralocorticoid receptor (MR) antagonist drugs such as spironolactone and eplerenone reduce the mortality in heart failure patients, there is, thus far, no unambiguous demonstration of a functional role of MR in cardiac cells. The aim of this work was to investigate the activation pathway(s) mediating corticosteroid-induced up-regulation of cardiac calcium current (ICa). In this study, using neonatal cardiomyocytes from MR or glucocorticoid receptor (GR) knockout (KO) mice, we show that MR is essential for corticosteroid-induced up-regulation of ICa. This study provides the first direct and unequivocal evidence for MR function in the heart.
Resumo:
Various pulmonary artery preparations in vitro demonstrate sustained endothelium-dependent contractions upon hypoxia. To determine whether endothelin-1 could mediate this phenomenon, we examined the effect of bosentan, a new antagonist of both the ETA and ETB subtypes of the endothelin receptor. Small (300 pm) pulmonary arteries from rats were mounted on a myograph, precontracted with prostaglandin F2 alpha and exposed to hypoxia (PO2, 10 to 15 mm Hg, measured on-line) for 45 min. Endothelium-intact control rings exhibited a biphasic response, with a transient initial vasoconstriction (phase 1) followed by a second slowly developing sustained contraction (phase 2). Expressed in percent of the maximal response to 80 mmol/L KCl, the amplitudes of phase 1 (peak tension) and 2 (tension after 45 min of hypoxia) averaged 37 +/- 12% and 17 +/- 14%, respectively (n = 11). In endothelium-denuded rings, phase 1 persisted while the amplitude of phase 2 was reduced to 2 +/- 12% (p < 0.05, n = 8), showing the endothelium dependence of this contraction. Neither phase was significantly decreased in rings treated with 10(-5) mmol/L bosentan (38 +/- 15% and 17 +/- 12%, respectively, n = 6). The PO2 threshold for onset of hypoxic contraction was not significantly different among these three groups and averaged 32 +/- 24 mm Hg. In a separate experiment, we assessed the inhibitory effect of 10(-5) mol/L bosentan on the response to 10(-8) mol/L endothelin-I. Rings treated for 45 min with 10(-8) mol/L endothelin-1 alone exhibited a maximal contraction of 75 +/- 27% (n = 6). This was reduced to 4 +/- 17% (p < 0.01, n = 6) in rings treated with both 10(-8) mol/L endothelin-1 and 10(-5) mol/L bosentan. We conclude that complete blockade of all endothelin receptor subtypes has no effect on either endothelium-dependent or -independent hypoxic contractions in this preparation. This suggests that endothelial factors other than endothelin-I mediate the acute hypoxic contractions of small pulmonary arteries in the rat.
Resumo:
While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144) have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action. These novel virus vectors, referred to as NYVAC-C-KC and NYVAC-C-KC-ΔB19R, have acquired relevant biological characteristics, giving higher levels of antigen expression in infected cells, replication-competency in human keratinocytes and dermal fibroblasts, activation of selective host cell signal transduction pathways, and limited virus spread in tissues. Importantly, these replication-competent viruses have been demonstrated to maintain a highly attenuated phenotype.
Resumo:
BACKGROUND: Ischemic stroke is the leading cause of mortality worldwide and a major contributor to neurological disability and dementia. Terutroban is a specific TP receptor antagonist with antithrombotic, antivasoconstrictive, and antiatherosclerotic properties, which may be of interest for the secondary prevention of ischemic stroke. This article describes the rationale and design of the Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history oF ischemic strOke or tRansient ischeMic Attack (PERFORM) Study, which aims to demonstrate the superiority of the efficacy of terutroban versus aspirin in secondary prevention of cerebrovascular and cardiovascular events. METHODS AND RESULTS: The PERFORM Study is a multicenter, randomized, double-blind, parallel-group study being carried out in 802 centers in 46 countries. The study population includes patients aged > or =55 years, having suffered an ischemic stroke (< or =3 months) or a transient ischemic attack (< or =8 days). Participants are randomly allocated to terutroban (30 mg/day) or aspirin (100 mg/day). The primary efficacy endpoint is a composite of ischemic stroke (fatal or nonfatal), myocardial infarction (fatal or nonfatal), or other vascular death (excluding hemorrhagic death of any origin). Safety is being evaluated by assessing hemorrhagic events. Follow-up is expected to last for 2-4 years. Assuming a relative risk reduction of 13%, the expected number of primary events is 2,340. To obtain statistical power of 90%, this requires inclusion of at least 18,000 patients in this event-driven trial. The first patient was randomized in February 2006. CONCLUSIONS: The PERFORM Study will explore the benefits and safety of terutroban in secondary cardiovascular prevention after a cerebral ischemic event.