914 resultados para Brazilian HIV-1 variant
Resumo:
HIV type 1 (HIV-1) drug resistance mutations were selected during antiretroviral therapy successfully suppressing plasma HIV-1 RNA to <50 copies/ml. New resistant mutant subpopulations were identified by clonal sequencing analyses of viruses cultured from blood cells. Drug susceptibility tests showed that biological clones of virus with the mutations acquired during successful therapy had increased resistance. Each of the five subjects with new resistant mutants had evidence of some residual virus replication during highly active antiretroviral therapy (HAART), based on transient episodes of plasma HIV-1 RNA > 50 copies/ml and virus env gene sequence changes. Each had received a suboptimal regimen before starting HAART. Antiretroviral-resistant HIV-1 can be selected from residual virus replication during HAART in the absence of sustained rebound of plasma HIV-1 RNA.
Resumo:
In vivo, retroviral integration is mediated by a large nucleoprotein complex, termed the preintegration complex (PIC). PICs isolated from infected cells display in vitro integration activity. Here, we analyze the roles of different host cell factors in the structure and function of HIV type 1 (HIV-1) PICs. PICs purified by size exclusion after treatment with high salt lost their integration activity, and adding back an extract from uninfected cells restored this activity. In parallel, the native protein–DNA intasome structure detected at the ends of HIV-1 by Mu-mediated PCR footprinting was abolished by high salt and restored by the crude cell extract. Various purified proteins previously implicated in retroviral PIC function then were analyzed for their effects on the structure and function of salt-treated HIV-1 PICs. Whereas relatively low amounts (5–20 nM) of human barrier-to-autointegration factor (BAF) protein restored integration activity, substantially more (5–10 μM) human host factor HMG I(Y) was required. Similarly high levels (3–8 μM) of bovine RNase A, a DNA-binding protein used as a nonspecific control, also restored activity. Mu-mediated PCR footprinting revealed that of these three purified proteins, only BAF restored the native structure of the HIV-1 protein–DNA intasome. We suggest that BAF is a natural host cofactor for HIV-1 integration.
Resumo:
Synthetic C peptides, corresponding to the C helix of the HIV type 1 (HIV-1) gp41 envelope protein, are potent inhibitors of HIV-1 membrane fusion. One such peptide is in clinical trials. The crystal structure of the gp41 core, in its proposed fusion-active conformation, is a trimer of helical hairpins in which three C helices pack against a central coiled coil. Each C helix shows especially prominent contacts with one of three symmetry-related, hydrophobic cavities on the surface of the coiled coil. We show that the inhibitory activity of the C peptide C34 depends on its ability to bind to this coiled-coil cavity. Moreover, examining a series of C34 peptide variants with modified cavity-binding residues, we find a linear relationship between the logarithm of the inhibitory potency and the stability of the corresponding helical-hairpin complexes. Our results provide strong evidence that this coiled-coil cavity is a good drug target and clarify the mechanism of C peptide inhibition. They also suggest simple, quantitative assays for the identification and evaluation of analogous inhibitors of HIV-1 entry.
Resumo:
Linear peptides derived from the membrane proximal region of the gp41 ectodomain are effective inhibitors of HIV type 1 (HIV-1)-mediated fusion events. These inhibitory peptides lack structure in solution, rendering mechanistic interpretation of their activity difficult. Using structurally constrained analogs of these molecules, we demonstrate that the peptides inhibit infectivity by adopting a helical conformation. Moreover, we show that a specific face of the helix must be exposed to block viral infectivity. Recent crystal structures show that the region of gp41 corresponding to the inhibitory peptides is helical and uses the analogous face to pack against a groove formed by an N-terminal coiled-coil trimer. Our results provide a direct link between the inhibition of HIV-1 infectivity by these peptides and the x-ray structures, and suggest that the conformation of gp41 observed by crystallography represents the fusogenic state. Other agents that block HIV-1 infectivity by binding to this groove may hold promise for the treatment of AIDS.
Resumo:
Antibodies that bind well to the envelope spikes of immunodeficiency viruses such as HIV type 1 (HIV-1) and simian immunodeficiency virus (SIV) can offer protection or benefit if present at appropriate concentrations before viral exposure. The challenge in antibody-based HIV-1 vaccine design is to elicit such antibodies to the viruses involved in transmission in humans (primary viruses). At least two major obstacles exist. The first is that very little of the envelope spike surface of primary viruses appears accessible for antibody binding (low antigenicity), probably because of oligomerization of the constituent proteins and a high degree of glycosylation of one of the proteins. The second is that the mature oligomer constituting the spikes appears to stimulate only weak antibody responses (low immunogenicity). Viral variation is another possible obstacle that appears to present fewer problems than anticipated. Vaccine design should focus on presentation of an intact mature oligomer, increasing the immunogenicity of the oligomer and learning from the antibodies available that potently neutralize primary viruses.
Resumo:
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV type 1 (HIV-1) reverse transcriptase (RT). Yeast grown in the presence of many of these drugs exhibited dramatically increased association of the p66 and p51 subunits of the HIV-1 RT as reported by a yeast two-hybrid assay. The enhancement required drug binding by RT; introduction of a drug-resistance mutation into the p66 construct negated the enhancement effect. The drugs could also induce heterodimerization of dimerization defective mutants. Coimmunoprecipitation of RT subunits from yeast lysates confirmed the induction of heterodimer formation by the drugs. In vitro-binding studies indicate that NNRTIs can bind tightly to p66 but not p51 and then mediate subsequent heterodimerization. This study demonstrates an unexpected effect of NNRTIs on the assembly of RT subunits.
Resumo:
Human immunodeficiency virus (HIV) type 2, the second AIDS-associated human retrovirus, differs from HIV-1 in its natural history, infectivity, and pathogenicity, as well as in details of its genomic structure and molecular behavior. We report here that HIV-2 inhibits the replication of HIV-1 at the molecular level. This inhibition was selective, dose-dependent, and nonreciprocal. The closely related simian immunodeficiency provirus also inhibited HIV-1. The selectivity of inhibition was shown by the observation that HIV-2 did not significantly downmodulate the expression of the unrelated murine leukemia virus; neither did the murine leukemia virus markedly affect HIV-1 or HIV-2 expression. Moreover, while HIV-2 potently inhibited HIV-1, the reverse did not happen, thus identifying yet another and remarkable difference between HIV-1 and HIV-2. Mutational analysis of the HIV-2 genome suggested that the inhibition follows a complex pathway, possibly involving multiple genes and redundant mechanisms. Introduction of inactivating mutations into the structural and regulatory/accessory genes did not render the HIV-2 provirus ineffective. Some of the HIV-2 gene defects, such as that of tat and rev genes, were phenotypically transcomplemented by HIV-1. The HIV-2 proviruses with deletions in the putative packaging signal and defective for virus replication were effective in inducing the suppressive phenotype. Though the exact mechanism remains to be defined, the inhibition appeared to be mainly due to an intracellular molecular event because it could not be explained solely on the basis of cell surface receptor mediated interference. The results support the notion that the inhibition likely occurred at the level of viral RNA, possibly involving competition between viral RNAs for some transcriptional factor essential for virus replication. Induction of a cytokine is another possibility. These findings might be relevant to the clinical-epidemiological data suggesting that infection with HIV-2 may offer some protection against HIV-1 infection.
Resumo:
Several disulfide benzamides have been shown to possess wide-spectrum antiretroviral activity in cell culture at low micromolar to submicromolar concentrations, inhibiting human immunodeficiency virus (HIV) type 1 (HIV-1) clinical and drug-resistant strains along with HIV-2 and simian immunodeficiency virus [Rice, W. G., Supko, J. G., Malspeis, L., Buckheit, R. W., Jr., Clanton, D., Bu, M., Graham, L., Schaeffer, C. A., Turpin, J. A., Domagala, J., Gogliotti, R., Bader, J. P., Halliday, S. M., Coren, L., Sowder, R. C., II, Arthur, L. O. & Henderson, L. E. (1995) Science 270, 1194-1197]. Rice and coworkers have proposed that the compounds act by "attacking" the two zinc fingers of HIV nucleocapsid protein. Shown here is evidence that low micromolar concentrations of the anti-HIV disulfide benzamides eject zinc from HIV nucleocapsid protein (NCp7) in vitro, as monitored by the zinc-specific fluorescent probe N-(6-methoxy-8-quinoyl)-p-toluenesulfonamide (TSQ). Structurally similar disulfide benzamides that do not inhibit HIV-1 in culture do not eject zinc, nor do analogs of the antiviral compounds with the disulfide replaced with a methylene sulfide. The kinetics of NCp7 zinc ejection by disulfide benzamides were found to be nonsaturable and biexponential, with the rate of ejection from the C-terminal zinc finger 7-fold faster than that from the N-terminal. The antiviral compounds were found to inhibit the zinc-dependent binding of NCp7 to HIV psi RNA, as studied by gel-shift assays, and the data correlated well with the zinc ejection data. Anti-HIV disulfide benzamides specifically eject NCp7 zinc and abolish the protein's ability to bind psi RNA in vitro, providing evidence for a possible antiretroviral mechanism of action of these compounds. Congeners of this class are under advanced preclinical evaluation as a potential chemotherapy for acquired immunodeficiency syndrome.
Resumo:
MAP30 (Momordica anti-HIV protein of 30 kDa) and GAP31 (Gelonium anti-HIV protein of 31 kDa) are anti-HIV plant proteins that we have identified, purified, and cloned from the medicinal plants Momordica charantia and Gelonium multiflorum. These antiviral agents are capable of inhibiting infection of HIV type 1 (HIV-1) in T lymphocytes and monocytes as well as replication of the virus in already-infected cells. They are not toxic to normal uninfected cells because they are unable to enter healthy cells. MAP30 and GAP31 also possess an N-glycosidase activity on 28S ribosomal RNA and a topological activity on plasmid and viral DNAs including HIV-1 long terminal repeats (LTRs). LTRs are essential sites for integration of viral DNA into the host genome by viral integrase. We therefore investigated the effect of MAP30 and GAP31 on HIV-1 integrase. We report that both of these antiviral agents exhibit dose-dependent inhibition of HIV-1 integrase. Inhibition was observed in all of the three specific reactions catalyzed by the integrase, namely, 3' processing (specific cleavage of the dinucleotide GT from the viral substrate), strand transfer (integration), and "disintegration" (the reversal of strand transfer). Inhibition was studied by using oligonucleotide substrates with sequences corresponding to the U3 and U5 regions of HIV LTR. In the presence of 20 ng of viral substrate, 50 ng of target substrate, and 4 microM integrase, total inhibition was achieved at equimolar concentrations of the integrase and the antiviral proteins, with EC50 values of about 1 microM. Integration of viral DNA into the host chromosome is a vital step in the replicative cycle of retroviruses, including the AIDS virus. The inhibition of HIV-1 integrase by MAP30 and GAP31 suggests that impediment of viral DNA integration may play a key role in the anti-HIV activity of these plant proteins.
Resumo:
Background: In family studies, it is important to evaluate the impact of genes and environmental factors on traits of interest. In particular, the relative influences of both genes and the environment may vary in different strata of the population of interest, such as young and old individuals, or males and females. Methods: In this paper, extensions of the variance components model are used to evaluate heterogeneity in the genetic and environmental variance components due to the effects of sex and age (the cutoff between young and old was 43 yrs). The data analyzed were from 81 Brazilian families (1,675 individuals) of the Baependi Family Heart Study. Results: The models allowing for heterogeneity of variance components by sex suggest that genetic and environmental variances are not different in males and females for diastolic blood pressure, LDL-cholesterol, and HDL-cholesterol, independent of the covariates included in the models. However, for systolic blood pressure, fasting glucose and triglycerides, the evidence for heterogeneity was dependent on the covariates in the model. For instance, in the presence of sex and age covariates, heterogeneity in the genetic variance component was suggested for fasting glucose. But, for systolic blood pressure, there was no evidence of heterogeneity in any of the two variance components. Except for the LDL-cholesterol, models allowing for heterogeneity by age provide evidence of heterogeneity in genetic variance for triglycerides and systolic and diastolic blood pressure. There was evidence of heterogeneity in environmental variance in fasting glucose and HDL-cholesterol. Conclusions: Our results suggest that heterogeneity in trait variances should not be ignored in the design and analyses of gene-finding studies involving these traits, as it may generate additional information about gene effects, and allow the investigation of more sophisticated models such as the model including sex-specific oligogenic variance components.
Resumo:
The T cell immunoglobulin mucin 3 (Tim-3) receptor is highly expressed on HIV-1-specific T cells, rendering them partially ""exhausted'' and unable to contribute to the effective immune mediated control of viral replication. To elucidate novel mechanisms contributing to the HTLV-1 neurological complex and its classic neurological presentation called HAM/TSP (HTLV-1 associated myelopathy/tropical spastic paraparesis), we investigated the expression of the Tim-3 receptor on CD8(+) T cells from a cohort of HTLV-1 seropositive asymptomatic and symptomatic patients. Patients diagnosed with HAM/TSP down-regulated Tim-3 expression on both CD8(+) and CD4(+) T cells compared to asymptomatic patients and HTLV-1 seronegative controls. HTLV-1 Tax-specific, HLA-A*02 restricted CD8(+) T cells among HAM/TSP individuals expressed markedly lower levels of Tim-3. We observed Tax expressing cells in both Tim-3(+) and Tim-3(-) fractions. Taken together, these data indicate that there is a systematic downregulation of Tim-3 levels on T cells in HTLV-1 infection, sustaining a profoundly highly active population of potentially pathogenic T cells that may allow for the development of HTLV-1 complications.
Resumo:
Variations in the inulin contents have been detected in rhizophores of Vernonia herbacea during the phenological cycle. These variations indicate the occurrence of active inulin synthesis and depolymerization throughout the cycle and a role for this carbohydrate as a reserve compound. 1-Fructan exohydrolase (1-FEH) is the enzyme responsible for inulin depolymerization, and its activity has been detected in rhizophores of sprouting plants. Defoliation and low temperature are enhancer conditions of this 1-FEH activity. The aim of the present work was the cloning of this enzyme. Rhizophores were collected from plants induced to sprout, followed by storage at 5C. A full length 1-FEH cDNA sequence was obtained by PCR and inverse PCR techniques, and expressed in Pichia pastoris. Cold storage enhances FEH gene expression. Vh1-FEH was shown to be a functional 1-FEH, hydrolyzing predominantly -2,1 linkages, sharing high identity with chicory FEH sequences, and its activity was inhibited by 81 in the presence of 10 mM sucrose. In V. herbacea, low temperature and sucrose play a role in the control of fructan degradation. This is the first study concerning the cloning and functional analysis of a 1-FEH cDNA of a native species from the Brazilian Cerrado. Results will contribute to understanding the role of fructans in the establishment of a very successful fructan flora of the Brazilian Cerrado, subjected to water limitation and low temperature during winter.
Resumo:
This paper describes a new method for the preparation of 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one 1 and its derivatives 2-5. This set of synthetic compounds exhibited high antitumoral activities regarding in vitro screening against several human tumor cell lines as lung carcinoma NCI-460, melanoma UACC-62, breast MCF-7, colon HT-29, renal 786-O, ovarian OVCAR-03 and ovarian expressing the resistance phenotype for adriamycin NCI-ADR/ RES, prostate PC-3, and leukemia K-562. Compounds were also tested against murine tumor cell line B16F10 melanoma and lymphocytic leukemia L1210 as well as to their effect toward normal macrophages. Specific activity against colon cancer cells HT-29 was observed for all tested compounds and suggests further studies with models of colon cancer. Compounds 1, 2, and 4 showed significant cytotoxic activity with IC(50) values <= 2.3 mu M for all human cancer cell lines. Intraperitoneal acute administration of compound 1 and 2 showed very low toxicity rate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Retrovirus entry into cells follows receptor binding by the surface exposed envelope glycoprotein (Env) subunit (SU), which triggers the membrane fusion activity of the transmembrane (TM) protein. TM protein fragments expressed in the absence of SU adopt helical hairpin structures comprising a central coiled coil, a region of chain reversal containing a disulfide-bonded loop, and a C-terminal segment that packs onto the exterior of the coiled coil in an antiparallel manner. Here we used in vitro mutagenesis to test the functional role of structural elements observed in a model helical hairpin, gp21 of human T-lymphotropic virus type 1. Membrane fusion activity requires the stabilization of the N and C termini of the central coiled coil by a hydrophobic N cap and a small hydrophobic core, respectively. A conserved Gly-Gly hinge motif preceding the disulfide-bonded loop, a salt bridge that stabilizes the chain reversal region, and interactions between the C-terminal segment and the coiled coil are also critical for fusion activity. Our data support a model whereby the chain reversal region transmits a conformational signal from receptor-bound SU to induce the fusion-activated helical hairpin conformation of the TM protein.
Resumo:
Background. Many resource-limited countries rely on clinical and immunological monitoring without routine virological monitoring for human immunodeficiency virus (HIV)-infected children receiving highly active antiretroviral therapy (HAART). We assessed whether HIV load had independent predictive value in the presence of immunological and clinical data for the occurrence of new World Health Organization (WHO) stage 3 or 4 events (hereafter, WHO events) among HIV-infected children receiving HAART in Latin America. Methods. The NISDI (Eunice Kennedy Shriver National Institute of Child Health and Human Development International Site Development Initiative) Pediatric Protocol is an observational cohort study designed to describe HIV-related outcomes among infected children. Eligibility criteria for this analysis included perinatal infection, age ! 15 years, and continuous HAART for >= 6 months. Cox proportional hazards modeling was used to assess time to new WHO events as a function of immunological status, viral load, hemoglobin level, and potential confounding variables; laboratory tests repeated during the study were treated as time-varying predictors. Results. The mean duration of follow-up was 2.5 years; new WHO events occurred in 92 (15.8%) of 584 children. In proportional hazards modeling, most recent viral load 15000 copies/mL was associated with a nearly doubled risk of developing a WHO event (adjusted hazard ratio, 1.81; 95% confidence interval, 1.05-3.11; P = 033), even after adjustment for immunological status defined on the basis of CD4 T lymphocyte value, hemoglobin level, age, and body mass index. Conclusions. Routine virological monitoring using the WHO virological failure threshold of 5000 copies/mL adds independent predictive value to immunological and clinical assessments for identification of children receiving HAART who are at risk for significant HIV-related illness. To provide optimal care, periodic virological monitoring should be considered for all settings that provide HAART to children.