959 resultados para Borborema province-Brazil


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rocks correlated with the Hough Lake and Quirke Lake Groups of the Huronian Supergroup form part of a northeasterly trending corridor that separates 1750 Ma granitic intrusive rocks of the Chief Lake batholith from the 1850 Ma mafic intrusive rocks of the Sudbury Igneous Complex. This corridor is dissected by two major structural features; the Murray Fault Zone (MFZ) and the Long Lake Fault (LLF). Detailed structural mapping and microstructural analysis indicates that the LLF, which has juxtaposed Huronian rocks of different deformation style and metamorphism grade, was a more significant plane of dislocation than the MFZ. The sense of displacement along the LLF is high angle reverse in which rocks to the southeast have been raised relative to those in the northwest. South of the LLF Huronian rocks underwent ductile defonnation at amphibolite facies conditions. The strain was constrictional, defined by a triaxial strain ellipsoid in which X > Y > z. Calculations of a regional k value were approximately 1.3. Penetrative ductile defonnation resulted in the development of a preferred crystallographic orientation in quartz as well as the elongation of quartz grains to fonn a regional southeast-northwest trending, subvertical lineation. Similar lithologies north of the LLF underwent dominantly brittle deformation under greenschist facies conditions. Deformation north of the LLF is characterized by the thrusting of structural blocks to form angular discordances in bedding orientation which were previously interpreted as folds. Ductile deformation occurred between 1750 and 1238 Ma and is correlated with a regional period of south over north reverse faulting that effected much of the southern Sudbury region. Post dating the reverse faulting event was a period of sedimentation as a conglomerate unit was deposited on vertically bedded Huronian rocks. Rocks in the study area were intruded by both mafic and felsic dykes. The 1238 Ma mafic dykes appear to have been offset during a period of dextral strike slip displacement along the major fault'). Indirect evidence indicates that this event occurred after the thrusting at 950 to 1100 Ma associated with the Grenvillian Orogeny.