956 resultados para Bone tool industry
Resumo:
This is a professional practice paper for Psychology practitioners to reflect on their skills and therapeutic practices. A Master- practitioner model or Artizan - apprentice analogy is used to understand the development of a practicing psychologist from his/her "salad days" (when we are green [Shakespeare- Anthony and Cleopatra]) to our Autumn years in the profession.
Resumo:
Purpose: The construction industry is well known for its high accident rate and many practitioners consider a preventative approach to be the most important means of bringing about improvements. This paper addresses previous research and the weaknesses of existing preventative approaches and a new application is described and illustrated involving the use of a multi-dimensional simulation tool - Construction Virtual Prototyping (CVP). Methodology: A literature review was conducted to investigate previous studies of hazard identification and safety management and to develop the new approach. Due to weaknesses in current practice, the research study explored the use of computer simulation techniques to create virtual environments where users can explore and identify construction hazards. Specifically, virtual prototyping technology was deployed to develop typical construction scenarios in which unsafe or hazardous incidents occur. In a case study, the users’ performance was evaluated their responses to incidents within the virtual environment and the effectiveness of the computer simulation system established though interviews with the safety project management team. Findings: The opinions and suggestions provided by the interviewees led to the initial conclusion that the simulation tool was useful in assisting the safety management team’s hazard identification process during the early design stage. Originality: The research introduces an innovative method to support the management teams’ reviews of construction site safety. The system utilises three-dimensional modelling and four-dimensional simulation of worker behaviour, a configuration that has previously not been employed in construction simulations. An illustration of the method’s use is also provided, together with a consideration of its strengths and weaknesses.
Resumo:
Safety culture is a concept that has long been accepted in high risk industries such as aviation, nuclear industries and mining, however, considerable research is now also being undertaken within the construction sector. This paper discusses three recent interlocked projects undertaken in the Australian construction industry. The first project examined the development and implementation of a safety competency framework targeted at safety critical positions (SCP's) across first tier construction organisations. Combining qualitative and quantitative methods, the project: developed a matrix of SCP's (n=11) and safety management tasks (SMTs; n=39); mapped the process steps for their acquisition and development; detailed the knowledge, skills and behaviours required for all SMTs; and outlined potential organisational cultural outcomes from a successful implementation of the framework. The second project extended this research to develop behavioural guidelines for leaders to drive safety culture change down to second tier companies and to assist them to customise their own competency framework and implementation guidelines to match their aspirations and resources. The third interlocked project explored the use of safety effectiveness indicators (SEIs) as an industry-relevant assessment tool for reducing risk on construction sites. With direct linkages to safety competencies and SMT's, the SEIs are the next step towards an integrated safety cultural approach to safety and extend the concept of positive performance indicators (PPIs) by providing a valid, reliable, and user friendly measurement platform. Taken together, the results of the interlocked projects suggest that industry engaged collaborative safety culture research has many potential benefits for the construction industry.
Resumo:
In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.
Resumo:
This book is an empirical study of strategic management practices in the construction industry. It examines the dynamic capabilities paradigm within the context of the Indonesian construction industry. The characteristics of asset-capability combinations were found to be significant determinants of the competitive advantage of the Indonesian construction enterprises, and that such advantage sequentially contributes to organizational performance. In doing so, this study fills an important gap in the empirical literature and reinforces the dynamic capabilities framework’s recognition as a rigorous theory of strategic management. As the dynamic capabilities framework can work in the context of Indonesia, it suggests that the framework has potential applicability in other emerging and developing countries
Resumo:
The main aim of this paper is to outline a proposed program of research which will attempt to quantify the extent of the problem of alcohol and other drugs in the Australian construction industry, and furthermore, develop an appropriate industry-wide policy and cultural change management program and implementation plan to address the problem. This paper will also present preliminary results from the study. The study will use qualitative and quantitative methods (in the form of interviews and surveys, respectively) to evaluate the extent of the problem of alcohol and other drug use in this industry, to ascertain the feasibility of an industry-wide policy and cultural change management program, and to develop an appropriate implementation plan. The study will be undertaken in several construction organisations, at selected sites in South Australia, Victoria and Northern Territory. It is anticipated that approximately 500 employees from the participating organisations across Australia will take part in the study. The World Health Organisation’s Alcohol Use Disorders Identification Test (AUDIT) will be used to measure the extent of alcohol use in the industry. Illicit drug use, ‘‘readiness to change’’, impediments to reducing impairment, feasibility of proposed interventions, and employee attitudes and knowledge regarding workplace AOD impairment, will also be measured through a combination of interviews and surveys. Among the preliminary findings, for 51% (n=127) of respondents, score on the AUDIT indicated alcohol use at hazardous levels. Of the respondents who were using alcohol at hazardous levels, 76% reported (n97) that they do not have a problem with drinking and 54% (n=68) reported that it would be easy to ‘‘cut down’’ or stop drinking. Nearly half (49%) of all respondents (n=122) had used marijuana/cannabis at some time prior to being surveyed. The use of other illicit substances was much less frequently reported. Preliminary interview findings indicated a lack of adequate employee knowledge regarding the physical effects of alcohol and other drugs in the workplace. As for conclusions, the proposed study will address a major gap in the literature with regard to the extent of the problem of alcohol and other drug use in the construction industry in Australia. The study will also develop and implement a national, evidence-based workplace policy, with the aim of mitigating the deleterious effects of alcohol and other drugs in this industry.
Resumo:
The fashion ecosystem is at boiling point as consumers turn up the heat in all areas of the fashion value, trend and supply chain. While traditionally fashion has been a monologue from designer brand to consumer, new technology and the virtual world has given consumers a voice to engage brands in a conversation to express evolving needs, ideas and feedback. Product customisation is no longer innovative. Successful brands are including customers in the design process and holding conversations ‘with’ them to improve product, manufacturing, sales, distribution, marketing and sustainable business practices. Co-creation and crowd sourcing are integral to any successful business model and designers and manufacturers are supplying the technology or tools for these creative, active, participatory ‘prosumers’. With this collaboration however, there arises a worrying trend for fashion professionals. The ‘design it yourself’, ‘indiepreneur’ who with the combination of technology, the internet, excess manufacturing capacity, crowd funding and the idea of sharing the creative integrity of a product (‘copyleft’ not copyright) is challenging the notion that the fashion supply chain is complex. The passive ‘consumer’ no longer exists. Fashion designers now share the stage with ‘amateur’ creators who are disrupting every activity they touch, while being motivated by profit as well as a quest for originality and innovation. This paper examines the effects this ‘consumer’ engagement is having on traditional fashion models and the fashion supply chain. Crowd sourcing, crowd funding, co-creating, design it yourself, global sourcing, the virtual supply chain, social media, online shopping, group buying, consumer to consumer marketing and retail, and branding the ‘individual’ are indicative of the new consumer-driven fashion models. Consumers now drive the fashion industry - from setting trends, through to creating, producing, selling and marketing product. They can turn up the heat at any time _ and any point _ in the fashion supply chain. They are raising the temperature at each and every stage of the chain, decreasing or eliminating the processes involved: decreasing the risk of fashion obsolescence, quantities for manufacture, complexity of distribution and the consumption of product; eliminating certain stages altogether and limiting the brand as custodians of marketing. Some brands are discovering a new ‘enemy’ – the very people they are trying to sell to. Keywords: fashion supply chain, virtual world, consumer, ‘prosumers’, co-creation, fashion designers
Resumo:
The objective of this exploratory study is to investigate the main drivers that enhance and inhibit the export performance of Chilean wineries. Based on survey data collected from Chilean wineries, the findings of this study suggest that the main constraints within the Chilean wineries in developing exports is the lack of financial resources, limited quantities of stocks for market expansion, management’s lack of knowledge and experience, and the high cost of travelling and participating in trade shows. The main drivers of wine export performance according to the respondents are high quality of the wines, well established network of international distributors, and marketing skills. The major inhibitors of developing wine exports are exchange rate variability, problems in selecting a reliable international distributor, and limited government support to promote wine exports. This study also shows that export managers of Chilean wineries have high educational levels and have international experience. The findings have important implications for export development efforts of both governments and managers.
Resumo:
Background: Despite the increasing clinical problems with metaphyseal fractures, most experimental studies investigate the healing of diaphyseal fractures. Although the mouse would be the preferable species to study the molecular and genetic aspects of metaphyseal fracture healing, a murine model does not exist yet. Using a special locking plate system, we herein introduce a new model, which allows the analysis of metaphyseal bone healing in mice. Methods: In 24 CD-1 mice the distal metaphysis of the femur was osteotomized. After stabilization with the locking plate, bone repair was analyzed radiologically, biomechanically, and histologically after 2 (n = 12) and 5 wk (n = 12). Additionally, the stiffness of the bone-implant construct was tested biomechanically ex vivo. Results: The torsional stiffness of the bone-implant construct was low compared with nonfractured control femora (0.23 ± 0.1 Nmm/°versus 1.78 ± 0.15 Nmm/°, P < 0.05). The cause of failure was a pullout of the distal screw. At 2 wk after stabilization, radiological analysis showed that most bones were partly bridged. At 5 wk, all bones showed radiological union. Accordingly, biomechanical analyses revealed a significantly higher torsional stiffness after 5 wk compared with that after 2 wk. Successful healing was indicated by a torsional stiffness of 90% of the contralateral control femora. Histological analyses showed new woven bone bridging the osteotomy without external callus formation and in absence of any cartilaginous tissue, indicating intramembranous healing. Conclusion: With the model introduced herein we report, for the first time, successful metaphyseal bone repair in mice. The model may be used to obtain deeper insights into the molecular mechanisms of metaphyseal fracture healing. © 2012 Elsevier Inc. All rights reserved.
Resumo:
It is nearly 10 years since the introduction of s 299(1)(f) Corporations Act , which requires the disclosure of information regarding a company's environmental performance within its annual report. This provision has generated considerable debate in the years since its introduction, fundamentally between proponents of either a voluntary or mandatory environmental reporting framework. This study examines the adequacy of the current regulatory framework. The environmental reporting practices of 24 listed companies in the resources industries are assessed relative to a standard set by the Global Reporting Initiative (GRI) Sustainability Reporting Guidelines. These Guidelines are argued to represent "international best practice" in environmental reporting and a "scorecard" approach is used to score the quality of disclosure according to this voluntary benchmark. Larger companies in the sample tend to report environmental information over and above the level required by legislation. Some, but not all companies present a stand-alone environmental/sustainability report. However, smaller companies provide minimal information in compliance with s 299(1)(f) . The findings indicate that "international best practice" environmental reporting is unlikely to be achieved by Australian companies under the current regulatory framework. In the current regulatory environment that scrutinises s 299(1)(f) , this article provides some preliminary evidence of the quality of disclosures generated in the Australian market.
Resumo:
Strontium (Sr), Zinc (Zn), magnesium (Mg), and silicon (Si) are reported to be essential trace elements for the growth and mineralization of bone. We speculated that the combination of these bioactive elements in bioceramics may be effective to regulate the osteogenic property of boneforming cells. In this study, two Sr-containing silicate bioceramics, Sr2ZnSi2O7 (SZS) and Sr2MgSi2O7 (SMS), were prepared. The biological response of human bone marrow mesenchymal stem cells (BMSCs) to the two bioceramics (in the forms of powders and dense ceramic bulks) was systematically studied. In powder form, the effect of powder extracts on the viability and alkaline phosphatase (ALP) activity of BMSCs was investigated. In ceramic disc form, both direct and indirect coculture of BMSCs with ceramic discs were used to investigate their biological response, including attachment, proliferation, ALP activity, and bone-related genes expression. Beta-tricalcium phosphate (b-TCP) and akermanite (Ca2MgSi2O7, CMS) were used as control materials. The results showed that the Sr, Zn, and Si (or Sr, Mg, and Si)-containing ionic products from SZS and SMS powders enhanced ALP activity of BMSCs, compared to those from b-TCP. Both SZS and SMS ceramic discs supported the growth of BMSCs, and most importantly, significantly enhanced the ALP activity and bone-related genes expression of BMSCs as compared to b-TCP. The results suggest that the specific combination of bioactive ions (Sr, Zn, Si, e.g.) in bioceramics is a viable way to improve the biological performance of biomaterials, and the form of materials and surface properties were nonnegligible factors to influence cell response.
Resumo:
This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal regeneration. In order to achieve simultaneous alveolar bone and periodontal ligament regeneration a cell-based strategy was carried out by combining osteoblast culture in the bone compartment and placement of multiple periodontal ligament (PDL) cell sheets on the electrospun membrane. In vitro data showed that the osteoblasts formed mineralized matrix in the bone compartment after 21 days in culture and that the PDL cell sheet harvesting did not induce significant cell death. The cell-seeded biphasic scaffolds were placed onto a dentin block and implanted for 8 weeks in an athymic rat subcutaneous model. The scaffolds were analyzed by μCT, immunohistochemistry and histology. In the bone compartment, a more intense ALP staining was obtained following seeding with osteoblasts, confirming the μCT results which showed higher mineralization density for these scaffolds. A thin mineralized cementum-like tissue was deposited on the dentin surface for the scaffolds incorporating the multiple PDL cell sheets, as observed by H&E and Azan staining. These scaffolds also demonstrated better attachment onto the dentin surface compared to no attachment when no cell sheets were used. In addition, immunohistochemistry revealed the presence of CEMP1 protein at the interface with the dentine. These results demonstrated that the combination of multiple PDL cell sheets and a biphasic scaffold allows the simultaneous delivery of the cells necessary for in vivo regeneration of alveolar bone, periodontal ligament and cementum. © 2012 Elsevier Ltd.
Resumo:
Information communication and technology (ICT) systems are almost ubiquitous in the modern world. It is hard to identify any industry, or for that matter any part of society, that is not in some way dependent on these systems and their continued secure operation. Therefore the security of information infrastructures, both on an organisational and societal level, is of critical importance. Information security risk assessment is an essential part of ensuring that these systems are appropriately protected and positioned to deal with a rapidly changing threat environment. The complexity of these systems and their inter-dependencies however, introduces a similar complexity to the information security risk assessment task. This complexity suggests that information security risk assessment cannot, optimally, be undertaken manually. Information security risk assessment for individual components of the information infrastructure can be aided by the use of a software tool, a type of simulation, which concentrates on modelling failure rather than normal operational simulation. Avoiding the modelling of the operational system will once again reduce the level of complexity of the assessment task. The use of such a tool provides the opportunity to reuse information in many different ways by developing a repository of relevant information to aid in both risk assessment and management and governance and compliance activities. Widespread use of such a tool allows the opportunity for the risk models developed for individual information infrastructure components to be connected in order to develop a model of information security exposures across the entire information infrastructure. In this thesis conceptual and practical aspects of risk and its underlying epistemology are analysed to produce a model suitable for application to information security risk assessment. Based on this work prototype software has been developed to explore these concepts for information security risk assessment. Initial work has been carried out to investigate the use of this software for information security compliance and governance activities. Finally, an initial concept for extending the use of this approach across an information infrastructure is presented.
Resumo:
The Six Sigma technique is one of the quality management strategies and is utilised for improving the quality and productivity in the manufacturing process. It is inspired by the two major project methodologies of Deming’s "Plan – Do – Check – Act (PDCA)" Cycle which consists of DMAIC and DMADV. Those two methodologies are comprised of five phases. The DMAIC project methodology will be comprehensively used in this research. In brief, DMAIC is utilised for improving the existing manufacturing process and it involves the phases Define, Measure, Analyse, Improve, and Control. Mask industry has become a significant industry in today’s society since the outbreak of some serious diseases such as the Severe Acute Respiratory Syndrome (SARS), bird flu, influenza, swine flu and hay fever. Protecting the respiratory system, then, has become the fundamental requirement for preventing respiratory deceases. Mask is the most appropriate and protective product inasmuch as it is effective in protecting the respiratory tract and resisting the virus infection through air. In order to satisfy various customers’ requirements, thousands of mask products are designed in the market. Moreover, masks are also widely used in industries including medical industries, semi-conductor industries, food industries, traditional manufacturing, and metal industries. Notwithstanding the quality of masks have become the prioritisations since they are used to prevent dangerous diseases and safeguard people, the quality improvement technique are of very high significance in mask industry. The purpose of this research project is firstly to investigate the current quality control practices in a mask industry, then, to explore the feasibility of using Six Sigma technique in that industry, and finally, to implement the Six Sigma technique in the case company to develop and evaluate the product quality process. This research mainly investigates the quality problems of musk industry and effectiveness of six sigma technique in musk industry with the United Excel Enterprise Corporation (UEE) Company as a case company. The DMAIC project methodology in the Six Sigma technique is adopted and developed in this research. This research makes significant contribution to knowledge. The main results contribute to the discovering the root causes of quality problems in a mask industry. Secondly, the company was able to increase not only acceptance rate but quality level by utilising the Six Sigma technique. Hence, utilising the Six Sigma technique could increase the production capacity of the company. Third, the Six Sigma technique is necessary to be extensively modified to improve the quality control in the mask industry. The impact of the Six Sigma technique on the overall performance in the business organisation should be further explored in future research.
Resumo:
Unmanned Aircraft Systems (UAS) describe a diverse range of aircraft that are operated without a human pilot on-board. Unmanned aircraft range from small rotorcraft, which can fit in the palm of your hand, through to fixed wing aircraft comparable in size to that of a commercial passenger jet. The absence of a pilot on-board allows these aircraft to be developed with unique performance capabilities facilitating a wide range of applications in surveillance, environmental management, agriculture, defence, and search and rescue. However, regulations relating to the safe design and operation of UAS first need to be developed before the many potential benefits from these applications can be realised. According to the International Civil Aviation Organization (ICAO), a Risk Management Process (RMP) should support all civil aviation policy and rulemaking activities (ICAO 2009). The RMP is described in International standard, ISO 31000:2009 (ISO, 2009a). This standard is intentionally generic and high-level, providing limited guidance on how it can be effectively applied to complex socio-technical decision problems such as the development of regulations for UAS. Through the application of principles and tools drawn from systems philosophy and systems engineering, this thesis explores how the RMP can be effectively applied to support the development of safety regulations for UAS. A sound systems-theoretic foundation for the RMP is presented in this thesis. Using the case-study scenario of a UAS operation over an inhabited area and through the novel application of principles drawn from general systems modelling philosophy, a consolidated framework of the definitions of the concepts of: safe, risk and hazard is made. The framework is novel in that it facilitates the representation of broader subjective factors in an assessment of the safety of a system; describes the issues associated with the specification of a system-boundary; makes explicit the hierarchical nature of the relationship between the concepts and the subsequent constraints that exist between them; and can be evaluated using a range of analytic or deliberative modelling techniques. Following the general sequence of the RMP, the thesis explores the issues associated with the quantified specification of safety criteria for UAS. A novel risk analysis tool is presented. In contrast to existing risk tools, the analysis tool presented in this thesis quantifiably characterises both the societal and individual risk of UAS operations as a function of the flight path of the aircraft. A novel structuring of the risk evaluation and risk treatment decision processes is then proposed. The structuring is achieved through the application of the Decision Support Problem Technique; a modelling approach that has been previously used to effectively model complex engineering design processes and to support decision-making in relation to airspace design. The final contribution made by this thesis is in the development of an airworthiness regulatory framework for civil UAS. A novel "airworthiness certification matrix" is proposed as a basis for the definition of UAS "Part 21" regulations. The outcome airworthiness certification matrix provides a flexible, systematic and justifiable method for promulgating airworthiness regulations for UAS. In addition, an approach for deriving "Part 1309" regulations for UAS is presented. In contrast to existing approaches, the approach presented in this thesis facilitates a traceable and objective tailoring of system-level reliability requirements across the diverse range of UAS operations. The significance of the research contained in this thesis is clearly demonstrated by its practical real world outcomes. Industry regulatory development groups and the Civil Aviation Safety Authority have endorsed the proposed airworthiness certification matrix. The risk models have also been used to support research undertaken by the Australian Department of Defence. Ultimately, it is hoped that the outcomes from this research will play a significant part in the shaping of regulations for civil UAS, here in Australia and around the world.