916 resultados para Bonding interface analysis
Resumo:
Investigation of the performance of engineering project organizations is critical for understanding and eliminating inefficiencies in today’s dynamic global markets. The existing theoretical frameworks consider project organizations as monolithic systems and attribute the performance of project organizations to the characteristics of the constituents. However, project organizations consist of complex interdependent networks of agents, information, and resources whose interactions give rise to emergent properties that affect the overall performance of project organizations. Yet, our understanding of the emergent properties in project organizations and their impact on project performance is rather limited. This limitation is one of the major barriers towards creation of integrated theories of performance assessment in project organizations. The objective of this paper is to investigate the emergent properties that affect the ability of project organization to cope with uncertainty. Based on the theories of complex systems, we propose and test a novel framework in which the likelihood of performance variations in project organizations could be investigated based on the environment of uncertainty (i.e., static complexity, dynamic complexity, and external source of disruption) as well as the emergent properties (i.e., absorptive capacity, adaptive capacity, and restorative capacity) of project organizations. The existence and significance of different dimensions of the environment of uncertainty and emergent properties in the proposed framework are tested based on the analysis of the information collected from interviews with senior project managers in the construction industry. The outcomes of this study provide a novel theoretical lens for proactive bottom-up investigation of performance in project organizations at the interface of emergent properties and uncertainty
Resumo:
We propose in this work, a new method of conceptual organization of areas involving assistive technology, categorizing them in a logical and simple manner; Furthermore, we also propose the implementation of an interface based on electroculography, able to generate high-level commands, to trigger robotic, computer and electromechanical devices. To validate the eye interface, was developed an electronic circuit associated with a computer program that captured the signals generated by eye movements of users, generating high-level commands, able to trigger an active bracing and many other electromechanical systems. The results showed that it was possible to control many electromechanical systems through only eye movements. The interface is presented as a viable way to perform the proposed task and can be improved in the signals analysis in the the digital level. The diagrammatic model developed, presented as a tool easy to use and understand, providing the conceptual organization needs of assistive technology
Resumo:
We present results of an inorganic geochemical pore water and sediment study conducted on Quaternary sediments from the western Arctic Ocean. The sediment cores were recovered in 2008 from the southern Mendeleev Ridge during RV Polarstern Expedition ARK-XXIII/3. With respect to sediment sources and depositional processes, peaks in Ca/Al, Mg/Al, Sr/Al and Sr/Mg indicate enhanced input of both ice-rafted (mainly dolomite) and biogenic carbonate during deglacial warming phases. Distinct and repetitive brown layers enriched in Mn (oxyhydr)oxides occur mostly in association with these carbonate-rich intervals. For the first time, we show that the brown layers are also consistently enriched in scavenged trace metals Co, Cu, Mo and Ni. The bioturbation patterns of the brown layers, specifically well-defined brown burrows into the underlying sediments, support formation close to the sediment-water interface. The Mn and trace metal enrichments were probably initiated under warmer climate conditions. Both river runoff and melting sea ice delivered trace metals to the Arctic Ocean, but also enhanced seasonal productivity and organic matter export to the sea floor. As Mn (oxyhydr)oxides and scavenged trace metals were deposited at the sea floor, a co-occurring organic matter "pulse" triggered intense diagenetic Mn cycling at the sediment-water interface. These processes resulted in the formation of Mn and trace metal enrichments, but almost complete organic matter degradation. As warmer conditions ceased, reduced riverine runoff and/or a solid sea ice cover terminated the input of riverine trace metal and fresh organic matter, and greyish-yellowish sediments poor in Mn and trace metals were deposited. Oxygen depletion of Arctic bottom waters as potential cause for the lack of Mn enrichments during glacial intervals is highly improbable. While the original composition and texture of the brown layers resulted from specific climatic conditions (including transient Mn redox cycling at the sediment-water interface), pore water data show that early diagenetic Mn redistribution is still affecting the organic-poor sediments in several meters depth. Given persistent steady state diagenetic conditions, purely authigenic Mn-rich brown layers may form, while others may completely vanish. The degree of diagenetic Mn redistribution largely depends on the depositional environment within the Arctic Ocean, the availability of Mn and organic matter, and seems to be recorded by the Co/Mo ratios of single Mn-rich layers. We conclude that brown Arctic sediment layers are not necessarily synchronous features, and correlating them across different parts of the Arctic Ocean without additional age control is not recommended.
Resumo:
Object-oriented design and object-oriented languages support the development of independent software components such as class libraries. When using such components, versioning becomes a key issue. While various ad-hoc techniques and coding idioms have been used to provide versioning, all of these techniques have deficiencies - ambiguity, the necessity of recompilation or re-coding, or the loss of binary compatibility of programs. Components from different software vendors are versioned at different times. Maintaining compatibility between versions must be consciously engineered. New technologies such as distributed objects further complicate libraries by requiring multiple implementations of a type simultaneously in a program. This paper describes a new C++ object model called the Shared Object Model for C++ users and a new implementation model called the Object Binary Interface for C++ implementors. These techniques provide a mechanism for allowing multiple implementations of an object in a program. Early analysis of this approach has shown it to have performance broadly comparable to conventional implementations.
Resumo:
As silicon based devices in integrated circuits reach the fundamental limits of dimensional scaling there is growing research interest in the use of high electron mobility channel materials, such as indium gallium arsenide (InGaAs), in conjunction with high dielectric constant (high-k) gate oxides, for Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) based devices. The motivation for employing high mobility channel materials is to reduce power dissipation in integrated circuits while also providing improved performance. One of the primary challenges to date in the field of III-V semiconductors has been the observation of high levels of defect densities at the high-k/III-V interface, which prevents surface inversion of the semiconductor. The work presented in this PhD thesis details the characterization of MOS devices incorporating high-k dielectrics on III-V semiconductors. The analysis examines the effect of modifying the semiconductor bandgap in MOS structures incorporating InxGa1-xAs (x: 0, 0.15. 0.3, 0.53) layers, the optimization of device passivation procedures designed to reduce interface defect densities, and analysis of such electrically active interface defect states for the high-k/InGaAs system. Devices are characterized primarily through capacitance-voltage (CV) and conductance-voltage (GV) measurements of MOS structures both as a function of frequency and temperature. In particular, the density of electrically active interface states was reduced to the level which allowed the observation of true surface inversion behavior in the In0.53Ga0.47As MOS system. This was achieved by developing an optimized (NH4)2S passivation, minimized air exposure, and atomic layer deposition of an Al2O3 gate oxide. An extraction of activation energies allows discrimination of the mechanisms responsible for the inversion response. Finally a new approach is described to determine the minority carrier generation lifetime and the oxide capacitance in MOS structures. The method is demonstrated for an In0.53Ga0.47As system, but is generally applicable to any MOS structure exhibiting a minority carrier response in inversion.
Resumo:
Based on an original and comprehensive database of all feature fiction films produced in Mercosur between 2004 and 2012, the paper analyses whether the Mercosur film industry has evolved towards an integrated and culturally more diverse market. It provides a summary of policy opportunities in terms of integration and diversity, emphasizing the limiter role played by regional policies. It then shows that although the Mercosur film industry remains rather disintegrated, it tends to become more integrated and culturally more diverse. From a methodological point of view, the combination of Social Network Analysis and the Stirling Model opens up interesting research tracks to analyse creative industries in terms of their market integration and their cultural diversity.
Resumo:
Fasciola hepatica, commonly known as liver fluke, is a trematode which causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterisation of FhTeg glycosylation using lectin microarrays to characterise carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. While some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components which could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.
Resumo:
Gate-tunable two-dimensional (2D) materials-based quantum capacitors (QCs) and van der Waals heterostructures involve tuning transport or optoelectronic characteristics by the field effect. Recent studies have attributed the observed gate-tunable characteristics to the change of the Fermi level in the first 2D layer adjacent to the dielectrics, whereas the penetration of the field effect through the one-molecule-thick material is often ignored or oversimplified. Here, we present a multiscale theoretical approach that combines first-principles electronic structure calculations and the Poisson–Boltzmann equation methods to model penetration of the field effect through graphene in a metal–oxide–graphene–semiconductor (MOGS) QC, including quantifying the degree of “transparency” for graphene two-dimensional electron gas (2DEG) to an electric displacement field. We find that the space charge density in the semiconductor layer can be modulated by gating in a nonlinear manner, forming an accumulation or inversion layer at the semiconductor/graphene interface. The degree of transparency is determined by the combined effect of graphene quantum capacitance and the semiconductor capacitance, which allows us to predict the ranking for a variety of monolayer 2D materials according to their transparency to an electric displacement field as follows: graphene > silicene > germanene > WS2 > WTe2 > WSe2 > MoS2 > phosphorene > MoSe2 > MoTe2, when the majority carrier is electron. Our findings reveal a general picture of operation modes and design rules for the 2D-materials-based QCs.
Resumo:
This research has as its object study focus bioclimatic in architecture and its conection with projects decisions, on what regards to environmental comfort for single-family dwelling. From the analysis of five architectural projects inserted in Natal/RN, warm-moist weather, this research gather informations regarding architectural features guided by shape and space arrengement, which embody important elements for the project design development. Computer simulations assisted as foundation to verify the efficiency grade for these projects strategies from shading analysis. Related strategies for the demands of natural ventilation circulation and thermal mass for refrigeration were analysed as well. Results show that there is an hierarchizing of priorities for the decisions made when it comes to shape and space disposition variables, as well as the way these variables will consider the bioclimatic demands. The analysis, even, show that there is no single way to respond to specific bioclimatic demands, as it points out the value of examination of the projectual solutions throughtout the conception process, in order to achieve an efficient project performance for the envimonment comfort
Resumo:
In the present investigation, bulk and chemical partitioning of elements in the Shefa-Rud riverbed sediments are studied. Higher concentrations of elemental concentrations have been observed in estuarine zone when compared with riverine sediments (except for Al, Fe, Pb and Mn). Manganese is mobilized under anoxic conditions prevailing in the Caspian Sea. Lithogenous materials are greatly diluted in the estuarine zone by various pollutants present in the Caspian Sea. Organic metallic bonds are not significantly present in the area of study. Geological units of the area of study have resulted in the lower concentrations of elemental concentrations of riverbed sediments when compared with published values for mean crust and world sediments ones. Though, cluster analysis has clearly shown the importance of alumina-silicates in controlling the distribution of Fe and Mn in riverbed sediments but it could not depict controlling mechanism for other studied elements. Geochemical Index (Igeo) and Enrichment Factor (EF) values are indicative of a clean environment throughout the river course. These values are in a well agreement with results of chemical partitioning data. Quantification of EF values is not logically possible and therefore Igeo values can be used more effectively.
Resumo:
This paper presents the evaluation of morpheme a sketching interface for the control of sound synthesis. We explain the task that was designed in order to assess the effectiveness of the interface, detect usability issues and gather participants’ responses regarding cognitive, experiential and expressive aspects of the interaction. The evaluation comprises a design task, where partici-pants were asked to design two soundscapes using the morpheme interface for two video footages. Responses were gathered using a series of likert type and open-ended questions. The analysis of the data gathered revealed a number of usability issues, however the performance of morpheme was satisfactory and participants recognised the creative potential of the interface and the synthesis methods for sound design applications.
Resumo:
SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.
Resumo:
Based on the presupposition that the arts in the West always counted on resources, supports, and devices pertaining to its time context, an reflection is intended regarding the scenic compositions mediated by digital technologies do. Such technologies are inserted in the daily routine, also composing artistic experiments, thus playing a dialogical role with the art/technology intersection. Therefore, the proposal is to investigate what relationships are established in the contemporary theatrical scene from the contagion by digital technologies, aiming at establishing this parallel through a dialogue with the authors discussing the subject, and also based on the group practices having technological resources as a determinant factor in their plays. Furthermore, a reflection should be made on the scene that incorporates or is carried out in intermediatic events, analyzing how digital technologies (re)configure compositional processes of the plays by GAG Phila7, in the city of São Paulo/SP. For such, the dissertation is organized in three sections comprising four moments, to wit: brief overview of the field, contextualization, poetic analysis and synthesis. Qualitative methods are used as the methodological proposal: semi-structure interview, note and document taking (program, website, playing book, disclosure material for advertising text, photographs, and videos). Within the universe of qualitative research, it works with the epistemological perspective of the Gadamer philosophical hermeneutics. The possibilities allowed by the double virtual (Internet/web) generated a type of theater with another material basis and new forms of organization and structure, being possible to perceive that such technological advances and the arts are mutually contaminated, generating a dislocation in the logics of theatrical composition, movement beginning with the artistic vanguards, gradually intensified, thus offering new possibilities of constructions and hybridization of the of the most different possible types. Experiment ―Profanações_superfície de eventos de construção coletiva‖, idealized by Phila7 is inserted in this perspective. Object of the discussion of such research, the experiment works with possible poetics arising from the intersection with the digital technologies, aiming at identifying and problematizing the challenges from the technological evolution and expansion in a scenic context
Resumo:
The structure of hCx26 derived from the X-ray analysis was used to generate a homology model for hCx46. Interacting connexin molecules were used as starting model for the molecular dynamics (MD) simulation using NAMD and allowed us to predict the dynamic behavior of hCx46wt and the cataract related mutant hCx46N188T as well as two artificial mutants hCx46N188Q and hCx46N188D. Within the 50 ns simulation time the docked complex composed of the mutants dissociate while hCx46wt remains stable. The data indicates that one hCx46 molecule forms 5-7 hydrogen bonds (HBs) with the counterpart connexin of the opposing connexon. These HBs appear essential for a stable docking of the connexons as shown by the simulation of an entire gap junction channel and were lost for all the tested mutants. The data described here are related to the research article entitled "The cataract related mutation N188T in human connexin46 (hCx46) revealed a critical role for residue N188 in the docking process of gap junction channels" (Schadzek et al., 2015) [1].
Resumo:
When performing Particle Image Velocimetry (PIV) measurements in complex fluid flows with moving interfaces and a two-phase flow, it is necessary to develop a mask to remove non-physical measurements. This is the case when studying, for example, the complex bubble sweep-down phenomenon observed in oceanographic research vessels. Indeed, in such a configuration, the presence of an unsteady free surface, of a solid–liquid interface and of bubbles in the PIV frame, leads to generate numerous laser reflections and therefore spurious velocity vectors. In this note, an image masking process is developed to successively identify the boundaries of the ship and the free surface interface. As the presence of the solid hull surface induces laser reflections, the hull edge contours are simply detected in the first PIV frame and dynamically estimated for consecutive ones. As for the unsteady surface determination, a specific process is implemented like the following: i) the edge detection of the gradient magnitude in the PIV frame, ii) the extraction of the particles by filtering high-intensity large areas related to the bubbles and/or hull reflections, iii) the extraction of the rough region containing these particles and their reflections, iv) the removal of these reflections. The unsteady surface is finally obtained with a fifth-order polynomial interpolation. The resulted free surface is successfully validated from the Fourier analysis and by visualizing selected PIV images containing numerous spurious high intensity areas. This paper demonstrates how this data analysis process leads to PIV images database without reflections and an automatic detection of both the free surface and the rigid body. An application of this new mask is finally detailed, allowing a preliminary analysis of the hydrodynamic flow.