794 resultados para Bitterroot River, Missoula and Ravalli County, Montana, USA
Resumo:
Latest issue consulted: 126th ed. (2007).
Resumo:
Sault Sainte Marie, Mich.
Resumo:
Norway, Mich.
Resumo:
1 of 2
Resumo:
2 of 2
Resumo:
Mode of access: Internet.
Resumo:
In November 2006, the flood of record on the upper Nisqually River destroyed part of Sunshine Point Campground in Mount Rainier National Park, Washington. The Nisqually River migrated north and reoccupied five acres of its floodplain; Tahoma Creek partially avulsed into the west floodplain, topping banks of an undersized channel and flooding the campground. I assessed hazards to infrastructure at the old campground location, where the Park proposes to rebuild the remaining campground roads and sites. This assessment focuses on two major hazards: northward Nisqually River migration, which may reincorporate the floodplain into the river destroying infrastructure; and Tahoma Creek avulsions, which may flood the campgroud and deposit sediment burying campground infrastructure. I quantify northward migration by: estimating migration rates and changes to channel width; evaluating river occupation of the pre- and post-2006 campground; and estimating scour depths at revetments protecting the campground. I digitized the Nisqually River channels and channel centerlines from maps and images between 1955 and 2013 into a GIS, which I used to estimate migration rate and river width changes. Centerline migration rates average 9 ft/yr along the length of the Nisqually River study reach; at Sunshine Point lateral migration rates average 11 ft/yr. Maximum migration along the study reach was 19 ft/yr between 2006 and 2009. Greater than average migration rates and channel widths correspond to river confluences and include the Tahoma Creek confluence at Sunshine Point. To determine historical channel locations and the frequency that the river occupied different parts of its floodplain, I digitized the river from maps and images between 1903 and 2013. The Nisqually River flows through Sunshine Point Campground in eight out of 15 historical images. I assess scour at revetments protecting infrastructure from the Nisqually River during a 100-year recurrence interval flood using measured cross-sections. During a 100-year flood, the Nisqually River may scour up to 10 feet below the bed elevation. These scour depths can destabilize critical revetments leaving loose unconsolidated riverbanks exposed to Nisqually River flows. To determine the causes, locations, and frequency of flood hazards from Tahoma Creek avulsions, I field map avulsion channels and compare the results with imagery and channel width changes between 1955 and 2013. Mapped avulsion channels occur with swaths of dead vegetation or nascent vegetation; both dead and recent vegetation are visibly distinct from surrounding vegetation in aerial images. Times of changes to these vegetation anomalies correspond to increases in Tahoma Creek channel width. Avulsions have occurred at least three times in the study period: pre-1955, between 1979 and 1984, and in 2006. The 1984 and 2006 avulsions both occur after increases in Tahoma Creek reach averaged width. The NPS is considering two options to rebuild Sunshine Point Campground, both at the same location. The hazards posed by the Nisqually River and Tahoma Creek at Sunshine Point will affect both construction options equally. Migration hazards to the campground may be reduced by limiting the proposed campground infrastructure to an elevated ridge that has not been occupied by the Nisqually River since 1903. The hazards of damage from migration may be reduced by revetments, which were effective in preventing northward Nisqually River migration in 1959 and 1965. Tahoma Creek avulsions are related increased of Tahoma Creek reach averaged widths, which are near a 58- year maximum, and occurred during a 10-year flood in 1984. The campground may be as susceptible to flooding from avulsions during as little as a 10-year flood. A large avulsion may occur with the next significant Tahoma Creek width increase. Glacial retreat has been shown to increase debris flow activity and increase sediment delivery to Mount Rainier rivers. Increased sediment discharge has been correlated with aggradation, which will further encourage Tahoma Creek avulsions.
Resumo:
This paper constructs a reduction sequence model for north Australian points from the eastern Victoria River region, and identifies a single continuum linking unifacial and bifacial point forms, with some divergence from this single reduction trajectory dependent upon artefact size. Chronological changes in reduction intensity between 5,000BP and the present are found to coincide with typological variation in points as well as changing emphasis on the extendibility of point reduction. It is suggested that changes in the extendibility of point reduction can be linked to intensified ENSO-driven climatic variability in the late Holocene that likely increased economic risk and warranted a substantial technological response, including the use of retouched toolkits with potential for longer use-lives.
Resumo:
1. Many species of delphinids co-occur in space and time. However, little is known of their ecological interactions and the underlying mechanisms that mediate their coexistence. 2. Snubfin Orcaella heinsohni, and Indo-Pacific humpback dolphins Sousa chinensis, live in sympatry throughout most of their range in Australian waters. I conducted boat-based surveys in Cleveland Bay, north-east Queensland, to collect data on the space and habitat use of both species. Using Geographic Information Systems, kernel methods and Euclidean distances I investigated interspecific differences in their space use patterns, behaviour and habitat preferences. 3. Core areas of use (50% kernel range) for both species were located close to river mouths and modified habitat such as dredged channels and breakwaters close to the Port of Townsville. Foraging and travelling activities were the dominant behavioural activities of snubfin and humpback dolphins within and outside their core areas. 4. Their representative ranges (95% kernel range) overlapped considerably, with shared areas showing strong concordance in the space use by both species. Nevertheless, snubfin dolphins preferred slightly shallower (1-2 m) waters than humpback dolphins (2-5 m). Additionally, shallow areas with seagrass ranked high in the habitat preferences of snubfin dolphins, whereas humpback dolphins favoured dredged channels. 5. Slight differences in habitat preferences appear to be one of the principal factors maintaining the coexistence of snubfin and humpback dolphins. I suggest diet partitioning and interspecific aggression as the major forces determining habitat selection in these sympatric species.
Resumo:
The broad objectives of the work were to develop standard methods for the routine biological surveillance of river water quality, using the non-planktonic algae. Studies on sampling methodology indicated that natural substrata should be sampled directly wherever possible, but for routine purposes, only a semi-quantitative approach was found to be feasible. Artificial substrata were considered to be useful for sample collection in deeper waters, and of three different types tested, Polythene strips were selected for further investigation essentially on grounds of practicality. These were tested in the deeper reaches of a wide range of river types and water qualities: 26 pool sites in 14 different rivers were studied over a period of 9 months. At each site, the assemblages developing on 3 strips following a 4, or less commonly, an 3 week immersion period were analysed quantitatively. Where possible, the natural substrata were also sampled semi-quantitatively at each site, and at a nearby riffle. The results of this survey were very fragmentary: many strips failed to yield useful data, and the results were often difficult to interpret, and of limited value for water quality surveillance purposes. In one river, the Churnet, the natural substrata at 14 riffle sites were sampled semi-quantitatively on 14 occasions at intervals of 4 weeks. In this survey, the results were more readily interpreted in relation to water quality, and no special data processing was found to be necessary or helpful. Further studies carried out on the filamentous green alga Cladophora showed that this alga may have some value as a bioaccumulation indicator for metals, and as a bioassay organism for the assessment of the algal growth promoting potential of natural river waters.
Resumo:
This collection of papers records a series of studies, carried out over a period of some 50 years, on two aspects of river pollution control - the prevention of pollution by sewage biological filtration and the monitoring of river pollution by biological surveillance. The earlier studies were carried out to develop methods of controlling flies which bred in the filters and caused serious nuisance and possible public health hazard, when they dispersed to surrounding villages. Although the application of insecticides proved effective as an alleviate measure, because it resulted in only a temporary disturbance of the ecological balance, it was considered ecologically unsound as a long-term solution. Subsequent investigations showed that the fly populations in filters were largely determined by the amount of food available to the grazing larval stage in the form of filter film. It was also established that the winter deterioration in filter performance was due to the excessive accumulation of film. Subsequent investigations were therefore carried out to determine the factors responsible for the accumulation of film in different types of filter. Methods of filtration which were considered to control film accumulation by increasing the flushing action of the sewage, were found to control fungal film by creating nutrient limiting conditions. In some filters increasing the hydraulic flushing reduced the grazing fauna population in the surface layers and resulted in an increase in film. The results of these investigations were successfully applied in modifying filters and in the design of a Double Filtration process. These studies on biological filters lead to the conclusion that they should be designed and operated as ecological systems and not merely as hydraulic ones. Studies on the effects of sewage effluents on Birmingham streams confirmed the findings of earlier workers justifying their claim for using biological methods for detecting and assessing river pollution. Further ecological studies showed the sensitivity of benthic riffle communities to organic pollution. Using experimental channels and laboratory studies the different environmental conditions associated with organic pollution were investigated. The degree and duration of the oxygen depletion during the dark hours were found to be a critical factor. The relative tolerance of different taxa to other pollutants, such as ammonia, differed. Although colonisation samplers proved of value in sampling difficult sites, the invertebrate data generated were not suitable for processing as any of the commonly used biotic indexes. Several of the papers, which were written by request for presentation at conferences etc., presented the biological viewpoint on river pollution and water quality issues at the time and advocated the use of biological methods. The information and experiences gained in these investigations was used as the "domain expert" in the development of artificial intelligence systems for use in the biological surveillance of river water quality.
Resumo:
The Ráckeve-Soroksár Danube has a great importance as it is the second largest side arm in the Hungarian section of the river Danube and many demands of exploitation are expected. The aim of this study is to analyse the spatial and temporal changes of the zooplankton (Copepoda, Cladocera) community in this river arm, moreover the similarity patterns of zooplankton communities in different Hungarian water bodies are presented in special consideration of the Ráckeve-Soroksár Danube. Basically this study is based on data from literature, however our data are also used for compiling the database for the spatio-temporal changes of the Ráckeve-Soroksár Danube. We put emphasis on the three typical sections of the side arm, as these are stressed due to hydromorphological aspects, but creating artificial borders are objectionable as well. The results show that both spatial and temporal changes are evident, what is more, the stagnant water character of the side arm should be underlined.
Resumo:
We assessed the diversity of woody plants at 15 forested sites in the Tansa Valley of Thane District, in Maharashtra, India. The fewest species (11) were seen at a degraded mangrove site near the river mouth, and the greatest number (150) in the rich semi-evergreen forest on Tungar Hill. For all sites there were 141 tree, 25 shrub and 15 liana species, a total of 181 species. Excluding the mangrove site, which had no species in common with the other 14 sites, we analyzed the species distributions in detail. 2 These sites ranged in area from 4 to 30 km each, had woody floras of 89 6 6 species, and varied in intensity of human impact. Despite a history of exploitation and substantial reduction in biomass from firewood collecting, set fires and illicit tree felling, considerable plant diversity remains in the area.We found a modest increase in species richness in transects away from two villages. We observed the exploitation of the forest by the principal users, primarily of the Warli Tribe. They exploited a wide variety of forest resources (92 species), for medicines, foods, construction materials, household goods, manure and other purposes. They collected 15 items for sale. By far the single most important item collected was firewood, which dramatically reduced forest biomass within 2 km of villages. The species distributions in these forest remnants are strongly nested, mostly due to varying degrees of disturbance at individual sites. The high species diversity on Tungar Hill is most likely a relict of the earlier character of forests throughout much of the valley. It merits the highest priorities for preservation, as a refuge for Western Ghat species at the northern limits of their distributions.
Resumo:
Everglades National Park (ENP) is about to undergo the world's largest wetland restoration with the aim of improving the quality, timing and distribution of water flow. The changes in water flow are hypothesized to alter the nutrient fluxes and organic matter (OM) dynamics within ENP, especially in the estuarine areas. This study used a multi-proxy approach of molecular markers and stable δ 13C isotope measurements, to determine the present day OM dynamics in ENP. ^ OM dynamics in wetland soils/sediments have proved to be difficult to understand using traditional geochemical approaches. These are often inadequate to describe the multitude of OM sources (e.g. higher land plant, emergent vegetation, submerged vegetation) to the soils/sediments and the complex diagenetic processes that can alter the OM characteristics. A multi-proxy approach, however, that incorporates both molecular level and bulk parameter information is ideal to comprehend complex OM dynamics in aquatic environments. Therefore, biomass-specific molecular markers or proxies can be useful in tracing the sources and processing of OM. This approach was used to examine the OM dynamics in the two major drainage basins, Shark River Slough and Taylor River Slough, of ENP. Freshwater to marine transects were sampled in both systems for soils/sediments and suspended particulate organic matter (SPOM) to be characterized through bulk OM analyses, lipid biomarker determinations (e.g. sterols, fatty acids, hydrocarbons and triterpenoids) and compound-specific stable carbon isotope (δ 13C) determinations. ^ One key accomplishment of the research was the assessment of a molecular marker proxy (Paq) to distinguish between emergent/higher plant vegetation from submerged vegetation within ENP. This proxy proved to be quite useful at tracing OM inputs to the soils/sediments of ENP. A second key accomplishment was the development of a 3-way model using vegetation specific molecular markers. This novel, descriptive model was successfully applied to the estuarine areas of Taylor and Shark River sloughs, providing clear evidence of mixing of freshwater, estuarine and marine derived OM in these areas. In addition, diagenetic transformations of OM in these estuaries were found to be quite different between Taylor and Shark Rivers, and are likely a result of OM quality and hydrological differences. ^
Resumo:
Surface water flow patterns in wetlands play a role in shaping substrates, biogeochemical cycling, and ecosystem characteristics. This paper focuses on the factors controlling flow across a large, shallow gradient subtropical wetland (Shark River Slough in Everglades National Park, USA), which displays vegetative patterning indicative of overland flow. Between July 2003 and December 2007, flow speeds at five sites were very low (s−1), and exhibited seasonal fluctuations that were correlated with seasonal changes in water depth but also showed distinctive deviations. Stepwise linear regression showed that upstream gate discharges, local stage gradients, and stage together explained 50 to 90% of the variance in flow speed at four of the five sites and only 10% at one site located close to a levee-canal combination. Two non-linear, semi-empirical expressions relating flow speeds to the local hydraulic gradient, water depths, and vegetative resistance accounted for 70% of the variance in our measured speed. The data suggest local-scale factors such as channel morphology, vegetation density, and groundwater exchanges must be considered along with landscape position and basin-scale geomorphology when examining the interactions between flow and community characteristics in low-gradient wetlands such as the Everglades.