890 resultados para Biomass pretreatments and hydrolysis
Resumo:
Estimates of the Q/B ratio and parameters of equations to 'predict' Q/B values for 116 fish stocks in the Gulf of Salamanca, Colombia are presented. A compilation of these estimates available for Caribbean Sea fishes (264 stocks) is also provided for comparison purposes. General trends in the value of Q/B resulting from differences in the equation and parameter values used are briefly discussed.
Resumo:
In this study, length-frequency data on Spanish sardine (Sardinella aurita) from northeastern Venezuela were analyzed for the period 1967-1989. Average growth parameters for the von Bertalanffy equation were established as L sub( infinity )= 26.6 cm (TL) and K = 1.26 year super(-1). The number of recruits to the fishing area, estimated from length-structured Virtual Population Analysis, varied from <10 super(8) in the late 1960s to >10 super(9) at the end of the 1980s. Exploited biomass estimates for the same period varied from less than 20,000 t in the first year to more than 100,000 in 1989. Both recruitment and exploited biomass showed different seasonal patterns between 1976-1983 and 1984-1988. Despite some uncertainty regarding these estimates, it is considered that major population tendencies are adequately represented by this analysis
Resumo:
Survey- and fishery-derived biomass estimates have indicated that the harvest indices for Pacific cod (Gadus macrocephalus) within a portion of Steller sea lion (Eumetopias jubatus) critical habitat in February and March 2001 were five to 16 times greater than the annual rate for the entire Bering Sea-Aleutian Islands stock. A bottom trawl survey yielded a cod biomass estimate of 49,032 metric tons (t) for the entire area surveyed, of which less than half (23,329 t) was located within the area used primarily by the commercial fishery, which caught 11,631 t of Pacific cod. Leslie depletion analyses of fishery data yielded biomass estimates of approximately 14,500 t (95% confidence intervals of approximately 9,000–25,000 t), which are within the 95% confidence interval on the fished area survey estimate (12,846–33,812 t). These data indicate that Leslie analyses may be useful in estimating local fish biomass and harvest indices for certain marine fisheries that are well constrained spatially and relatively short in duration (weeks). In addition, fishery effects on prey availability within the time and space scales relevant to foraging sea lions may be much greater than the effects indicated by annual harvest rates estimated from stock assessments averaged across the range of the target spec
Resumo:
Recruitment of bay anchovy (Anchoa mitchilli) in Chesapeake is related to variability in hydrological conditions and to abundance and spatial distribution of spawning stock biomass (SSB). Midwater-trawl surveys conducted for six years, over the entire 320-km length of the bay, provided information on anchovy SSB, annual spatial patterns of recruitment, and their relationships to variability in the estuarine environment. SSB of anchovy varied sixfold in 1995–2000; it alone explained little variability in young-of-the-year (YOY) recruitment level in October, which varied ninefold. Recruitments were low in 1995 and 1996 (47 and 31 Z 109) but higher in 1997–2000 (100 to 265 Z 109). During the recruitment process the YOY population migrated upbay before a subsequent fall-winter downbay migration. The extent of the downbay migration by maturing recruits was greatest in years of high freshwater input to the bay. Mean dissolved oxygen (DO) was more important than freshwater input in controlling distribution of SSB and shifts in SSB location between April– May (prespawning) and June–August (spawning) periods. Recruitments of bay anchovy were higher when mean DO was lowest in the downbay region during the spawning season. It is hypothesized that anchovy recruitment level is inversely related to mean DO concentration because low DO is associated with high plankton productivity in Chesapeake Bay. Additionally, low DO conditions may confine most bay anchovy spawners to the downbay region, where production of larvae and juveniles is enhanced. A modified Ricker stock-recruitment model indicated density-compensatory recruitment with respect to SSB and demonstrated the importance of spring-summer DO levels and spatial distribution of SSB as controllers of bay anchovy recruitment.
Resumo:
A general model for yield-per-recruit analysis of rotational (periodic) fisheries is developed and applied to the sea scallop (Placopecten magellanicus) fishery of the northwest Atlantic. Rotational fishing slightly increases both yield- and biomass-per-recruit for sea scallops at FMAX. These quantities decline less quickly when fishing mortality is increased beyond FMAX than when fishing is at a constant rate. The improvement in biomass-per-recruit appears to be nearly independent of the selectivity pattern but increased size-at-entry can reduce or eliminate the yield-per-recruit advantage of rotation. Area closures and rotational fishing can cause difficulties with the use of standard spatially averaged fishing mortality metrics and reference points. The concept of temporally averaged fishing mortality is introduced as one that is more appropriate for sedentary resources when fishing mortality varies in time and space.