985 resultados para Benznidazole. Solubility studies. Cosolvency. Multicomponentcomplex. Spray drying
Resumo:
This invited editorial, reflecting on expectations of changing to graduate entry, eg enhanced maturity in the student cohort with greater self-sufficiency and taking of responsibility for learning in the context of adoption of a problem-based learning model, examines experiences of early post-change years and raises questions for contemplation by medical schools considering graduate entry.
Resumo:
delta-Atracotoxin-Ar1a (delta-ACTX-Ar1a) is the major polypeptide neurotoxin isolated from the venom of the male Sydney funnel-web spider, Atrax robustus. This neurotoxin targets both insect and mammalian voltage-gated sodium channels, where it competes with scorpion alpha-toxins for neurotoxin receptor site-3 to slow sodium-channel inactivation. Progress in characterizing the structure and mechanism of action of this toxin has been hampered by the limited supply of pure toxin from natural sources. In this paper, we describe the first successful chemical synthesis and oxidative refolding of the four-disulfide bond containing delta-ACTX-Ar1a. This synthesis involved solid-phase Boc chemistry using double coupling, followed by oxidative folding of purified peptide using a buffer of 2 M GdnHCl and glutathione/glutathiol in a 1:1 mixture of 2-propanol (pH 8.5). Successful oxidation and refolding was confirmed using both chemical and pharmacological characterization. Ion spray mass spectrometry was employed to confirm the molecular weight. H-1 NMR analysis showed identical chemical shifts for native and synthetic toxins, indicating that the synthetic toxin adopts the native fold. Pharmacological studies employing whole-cell patch clamp recordings from rat dorsal root ganglion neurons confirmed that synthetic delta-ACTX-Ar1a produced a slowing of the sodium current inactivation and hyperpolarizing shifts in the voltage-dependence of activation and inactivation similar to native toxin. Under current clamp conditions, we show for the first time that delta-ACTX-Ar1a produces spontaneous repetitive plateau potentials underlying the clinical symptoms seen during envenomation. This successful oxidative refolding of synthetic delta-ACTX-Ar1a paves the way for future structure-activity studies to determine the toxin pharmacophore.
Resumo:
Aluminium (At) tolerance in plants may be conferred by reduced binding of Al in the cell wall through low root cation exchange capacity (CEC) or by organic acid exudation. Root CEC is related to the degree of esterification (DE) of pectin in the cell wall, and pectin hydrolysis plays a role in cell expansion. Therefore, it was hypothesised that Al-tolerant plants with a low root CEC maintain pectin hydrolysis in the presence of Al, allowing cell expansion to continue. Irrespective of the DE, binding of Al to pectin reduced the enzymatic hydrolysis of Al-pectin gels by polygalacturonase (E.C. 3.2.1.15). Pectin gels with calcium (Ca) were slightly hydrolysed by polygalacturonase. It was concluded, therefore, that Al tolerance conferred by low root CEC is not mediated by the ability to maintain pectin hydrolysis. Citrate and malate, but not acetate, effectively dissolved Al-pectate gel and led to hydrolysis of the dissolved pectin by polygalacturonase. The organic acids did not dissolve Ca-pectate, nor did they increase pectin hydrolysis by polygalacturonase. It was concluded that exudation of some organic acids can remove Al bound to pectin and this could alleviate toxicity, constituting a tolerance mechanism. (C) 2003 Editions scientitiques et medicales Elsevier SAS. All rights reserved.
Resumo:
A probe tack test has been used for the in situ characterization of the surface stickiness of hemispherical drops with an initial radius of 3.5 mm while drying. Surface stickiness of drops of fructose and maltodextrin solutions dried at 63degreesC and 95degreesC was determined. The effect of addition of maltodextrin on fructose solution-was studied with fructose/maltodextrin solid mass ratios of 4: 1, 1: 1, and 1:4. Pure fructose solutions remained completely sticky and failed cohesively even when their moisture approached zero. Shortly after the start of drying, the surface of the maltodextrin drops formed a skin, which rapidly grew in thickness. Subsequently the drop surface became completely nonsticky probably due to transformation of outer layers into a glassy material. Addition of malto,dextrin significantly altered the surface stickiness of drops of fructose solutions, demonstrating its use as an effective drying aid.
Resumo:
The effects that four pretreatments (blanching, chilling, freezing, and combined blanching and freezing), used prior to drying, had on the drying rate and quality of bananas were investigated. An untreated sample was used as a control. The bananas were dried at 50 degreesC in a heat pump dehumidifier dryer, using an air velocity of 3.1 m s(-1), until a final moisture content of approximately 25% dry weight basis was attained. While the initial drying rate was highest for the blanched treatment, the two pretreatments involving freezing resulted in the shortest drying times. The blanched sample was most preferred in terms of colour while the frozen samples exhibited extensive browning. The texture and flavour was significantly (P < 0.05) reduced in all samples that involved blanching and/or freezing.
Resumo:
In a 2-yr multiple-site field study conducted in western Nebraska during 1999 and 2000, optimum dryland corn (Zea mays L.) population varied from less than 1.7 to more than 5.6 plants m(-2), depending largely on available water resources. The objective of this study was to use a modeling approach to investigate corn population recommendations for a wide range of seasonal variation. A corn growth simulation model (APSIM-maize) was coupled to long-term sequences of historical climatic data from western Nebraska to provide probabilistic estimates of dryland yield for a range of corn populations. Simulated populations ranged from 2 to 5 plants m(-2). Simulations began with one of three levels of available soil water at planting, either 80, 160, or 240 mm in the surface 1.5 m of a loam soil. Gross margins were maximized at 3 plants m(-2) when starting available water was 160 or 240 mm, and the expected probability of a financial loss at this population was reduced from about 10% at 160 mm to 0% at 240 mm. When starting available water was 80 mm, average gross margins were less than $15 ha(-1), and risk of financial loss exceeded 40%. Median yields were greatest when starting available soil water was 240 mm. However, perhaps the greater benefit of additional soil water at planting was reduction in the risk of making a financial loss. Dryland corn growers in western Nebraska are advised to use a population of 3 plants m(-2) as a base recommendation.
Resumo:
With recent advances in molecular biology, it is now possible to use the trace amounts of DNA in faeces to non-invasively sample endangered species for genetic studies. A highly vulnerable population of approximately 100 great bustards (Otis tarda) exists in Morocco necessitating the use of non-invasive protocols to study their genetic structure. Here we report a reliable silica-based method to extract DNA from great bustard faeces. We found that successful extraction and amplification correlated strongly with faeces freshness and composition. We could not extract amplifiable DNA from 30% of our samples as they were dry or contained insect material. However 100% of our fresh faecal samples containing no obvious insect material worked, allowing us to assess the levels of genetic variation among 25 individuals using a 542 bp control region sequence. We were able to extract DNA from four out of five other avian species, demonstrating that faeces represents a suitable source of DNA for population genetics studies in a broad range of species.
Resumo:
Three different particular geometrical shapes of parallelepiped, cylinder and sphere were taken from cut green beans (length:diameter = 1:1, 2:1 and 3:1) and potatoes (aspect ratio = 1:1, 2:1 and 3:1) and peas, respectively. Their drying behaviour in a fluidised bed was studied at three different drying temperatures of 30, 40 and 50 degreesC (RH = 15%). Drying curves were constructed using non-dimensional moisture ratio (MR) and time and their behaviour was modelled using exponential (MR = exp(-kt)) and Page (MR = exp(-kt(n))) models. The effective diffusion coefficient of moisture transfer was determined by Fickian method using uni- and three-dimensional moisture movements. The diffusion coefficient was least affected by the size when the moisture movement was considered three-dimensional, whereas the drying temperature had a significative effect on diffusivity as expected. The drying constant and diffusivity coefficients were on the descending order for potato, beans and peas. The Arrhenius activation energy for the peas was also highest, indicating a strong barrier to moisture movement in peas as compared to beans and skinless cut potato pieces. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The solubility of ethyl propionate, ethyl butyrate, and ethyl isovalerate in supercritical carbon dioxide was measured at temperature ranging from 308.15 to 333.15 K and pressure ranging from 85 to 195 bar. At the same temperature, the solubility of these compounds increases with pressure. The crossover pressure region was also observed in this study. The experimental data were correlated by the semi-empirical Chrastil equation and Peng-Robinson equation of state (EOS) using several mixing rules. The Peng-Robinson EOS gives better solubility prediction than the empirical Chrastil equation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Given the necessity of developing jatropha cultivation equipment, this work adjusted different mathematical models to experimental data obtained from the drying of jatropha seeds submitted to different drying conditions and selected the best model to describe the drying process. The experiment was carried out at the Federal Institute of Goiás - Rio Verde Campus. Seeds with initial moisture content of approximately 0.50 (kg water/kg dry matter) were dried in a forced air-ventilated oven, at temperatures of 45, 60, 75, 90 and 105°C to moisture content of 0.10 ± 0.005 (kg water/kg dry matter). The experimental data were adjusted to 11 mathematical models to represent the drying process of agricultural products. The models were compared using the coefficient of determination, chi-square test, relative mean error, estimated mean error and residual distribution. It was found that the increase in the air temperature caused a reduction in the drying time of seeds. The models Midilli and Two Terms were suitable to represent the drying process of Jatropha seeds and between them the use of the Midili model is recommended due to its greater simplicity.
Resumo:
This study was carried out to study the physical properties of the jatropha beans over the drying under six air conditions, based on measurements of roundness, sphericity, volume, superficial area, projected area and surface/volume ratio. Jatropha beans with moisture content around 0.61 (decimal d.b.) were subjected to thin-layer drying in oven with forced-air circulation under six temperature conditions (36, 45, 60, 75, 90 and 105 °C) and relative humidity of 31.7; 19.6; 9.4; 4.8; 2.6 and 1.5% respectively, until reaching the moisture content of 0.11 ± 0.006 (decimal d. b.). The results showed that the necessary time for jatropha beans to reach the moisture content of 0.11 ± 0.006 (decimal d.b.) were 1.5; 2.25; 3.0; 4.75; 6.75 and 12.0 h for the drying temperatures of 105, 90, 75, 60, 45 and 36 °C, respectively; and the reduction in the moisture content as well as the drying conditions promoted changes in the shape and reduced the size of the jatropha beans.