963 resultados para Bellingshausen Sea, shallow part of trough in Eltanin Bay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barite crusts were formed by an intermittent hydrothermal vent with output temperature from 85 to 465°C. Principal sources of supply of sulfate sulfur are sea water, evaporites, and tholeiitic basalts of the Red Sea rift. Sulfides and sulfates were formed in conditions of isotope disequilibrium with respect to sulfur because rate of precipitation of sulfur compounds from hydrothermal solution was high compared with rate of isotope exchange.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the NW-slope of Eckernforder Bay (Western Baltic) between 14 and 21 m water depth 7 sand cores were taken with a vibrocorer. The cores were between 85 and 250 cm long. The sand was analysed for grain size distribution, proportions of organic carbon and carbonate, and contents of microfossils. The radiometric age and stable carbon isotope ratios were determined on organic material from 14 sample. With regard to benthic foraminifera and other microorganisms four different types of depositional conditions could be distinguished: Types 1 and 2: two types of offshore sand areas. Type 3: lagoon and nearshore. Type 4: subaerial or limnic. Using sedimentological and geochemical parameters two formation areas could be distinguished with the aid of a discriminant analysis: offshore (types 1 and 2) and nearshore (types 3 and 4). A juxtaposition of core sections indicated two distinct profiles. Their ages fit into the picture of the assumed postglacial sea-level rise. The lagoon- and nearshore sands are interpreted as the result of sea-level stagnation at 17-18 m below present sea-level. The accumulation rates of the sand in the offshore areas are, with a maximum of 0.15 mm/yr., an order of magnitude smaller than in the mud areas, located several hundred metres away.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of changing ice and atmospheric conditions on the upwelling of deep nutrient-laden waters and biological productivity in the coastal Beaufort Sea were quantified using a unique combination of in situ and remote-sensing approaches. Repeated instances of ice ablation and upwelling during fall 2007 and summer 2008 multiplied the production of ice algae, phytoplankton, zooplankton and benthos by 2 to 6 fold. Strong wind forcing failed to induce upward shifts in the biological productivity of stratified waters off the shelf.