976 resultados para Becker, Philipp August, 1862-1947.
Resumo:
This paper investigates why and how the geographical scope of the security community centered around the European Union (EU) is expanding. It starts from the assumption that the EU itself is a ‘tightly-coupled mature pluralistic security community’. The analysis of the expansion of this peaceful area is based on the theoretical framework first designed by Karl Deutsch and later developed by Emmanuel Adler and Michael Barnett. Contrary to the logic of the adage ‘si vis pacem para bellum’, I argue that the security community is expanding because the EU’s own origins and self-perception are driven by an ambition to create lasting peace. The key mechanisms I explore are the EU’s enlargement and neighborhood policies, which are best understood when analyzed against the concept of concentric circles: the regional EU-centered security community is a multi-speed security community, stronger at its core and weaker as it spreads towards its margins.
Resumo:
Dendrodrilus rubidus were sampled from a mine spoil soil at Coniston Copper Mine, an abandoned Cu mine in Cumbria, UK and a Cu-free control site. Earthworms were maintained for 14 d in both Kettering loam and a Moorland soil amended with Cu nitrate. Mortality, condition index, weight change and tissue concentration were determined. In both soils D. rubidus native to the mine site were able to tolerate significantly higher soil Cu concentrations (MWRT, p <= 0.001), and exhibited significantly less change in weight (t-test, p <= 0.001) and a lower loss in condition (t-test, p <= 0.001) than control earthworms. For a given soil Cu concentration tissue Cu concentrations were greater in the mine site earthworms. Low cocoon production and viability from the mine site population prevented the determination of toxicity parameters on the F1 generation and may be an indicator of the cost of tolerance to the population. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The Bonin high is a subtropical anticyclone that is predominant near Japan in the summer. This anticyclone is associated with an equivalent-barotropic structure, often extending throughout the entire troposphere. Although the equivalent-barotropic structure of the Bonin high has been known for years among synopticians because of its importance to the summer climate in east Asia, there are few dynamical explanations for such a structure. The present paper attempts to provide a formation mechanism for the deep ridge near Japan. We propose a new hypothesis that this equivalent-barotropic ridge near Japan is formed as a result of the propagation of stationary Rossby waves along the Asian jet in the upper troposphere (‘the Silk Road pattern’). First, the monthly mean climatology is examined in order to demonstrate this hypothesis. It is shown that the enhanced Asian jet in August is favourable for the propagation of stationary Rossby waves and that the regions of descent over the eastern Mediterranean Sea and the Aral Sea act as two major wave sources. Second, a primitive-equation model is used to simulate the climatology of August. The model successfully simulates the Bonin high with an equivalent-barotropic structure. The upper-tropospheric ridge is found to be enhanced by a height anomaly of more than 80 m at 200 hPa, when a wave packet arrives. Sensitivity experiments are conducted to show that the removal of the diabatic cooling over the Asian jet suppresses the Silk Road pattern and formation of an equivalent-barotropic ridge near Japan, while the removal of the diabatic heating in the western Pacific does not. Copyright © 2003 Royal Meteorological Society
Resumo:
Lava domes comprise core, carapace, and clastic talus components. They can grow endogenously by inflation of a core and/or exogenously with the extrusion of shear bounded lobes and whaleback lobes at the surface. Internal structure is paramount in determining the extent to which lava dome growth evolves stably, or conversely the propensity for collapse. The more core lava that exists within a dome, in both relative and absolute terms, the more explosive energy is available, both for large pyroclastic flows following collapse and in particular for lateral blast events following very rapid removal of lateral support to the dome. Knowledge of the location of the core lava within the dome is also relevant for hazard assessment purposes. A spreading toe, or lobe of core lava, over a talus substrate may be both relatively unstable and likely to accelerate to more violent activity during the early phases of a retrogressive collapse. Soufrière Hills Volcano, Montserrat has been erupting since 1995 and has produced numerous lava domes that have undergone repeated collapse events. We consider one continuous dome growth period, from August 2005 to May 2006 that resulted in a dome collapse event on 20th May 2006. The collapse event lasted 3 h, removing the whole dome plus dome remnants from a previous growth period in an unusually violent and rapid collapse event. We use an axisymmetrical computational Finite Element Method model for the growth and evolution of a lava dome. Our model comprises evolving core, carapace and talus components based on axisymmetrical endogenous dome growth, which permits us to model the interface between talus and core. Despite explicitly only modelling axisymmetrical endogenous dome growth our core–talus model simulates many of the observed growth characteristics of the 2005–2006 SHV lava dome well. Further, it is possible for our simulations to replicate large-scale exogenous characteristics when a considerable volume of talus has accumulated around the lower flanks of the dome. Model results suggest that dome core can override talus within a growing dome, potentially generating a region of significant weakness and a potential locus for collapse initiation.
Resumo:
During many lava dome-forming eruptions, persistent rockfalls and the concurrent development of a substantial talus apron around the foot of the dome are important aspects of the observed activity. An improved understanding of internal dome structure, including the shape and internal boundaries of the talus apron, is critical for determining when a lava dome is poised for a major collapse and how this collapse might ensue. We consider a period of lava dome growth at the Soufrière Hills Volcano, Montserrat, from August 2005 to May 2006, during which a 100 × 106 m3 lava dome developed that culminated in a major dome-collapse event on 20 May 2006. We use an axi-symmetrical Finite Element Method model to simulate the growth and evolution of the lava dome, including the development of the talus apron. We first test the generic behaviour of this continuum model, which has core lava and carapace/talus components. Our model describes the generation rate of talus, including its spatial and temporal variation, as well as its post-generation deformation, which is important for an improved understanding of the internal configuration and structure of the dome. We then use our model to simulate the 2005 to 2006 Soufrière Hills dome growth using measured dome volumes and extrusion rates to drive the model and generate the evolving configuration of the dome core and carapace/talus domains. The evolution of the model is compared with the observed rockfall seismicity using event counts and seismic energy parameters, which are used here as a measure of rockfall intensity and hence a first-order proxy for volumes. The range of model-derived volume increments of talus aggraded to the talus slope per recorded rockfall event, approximately 3 × 103–13 × 103 m3 per rockfall, is high with respect to estimates based on observed events. From this, it is inferred that some of the volumetric growth of the talus apron (perhaps up to 60–70%) might have occurred in the form of aseismic deformation of the talus, forced by an internal, laterally spreading core. Talus apron growth by this mechanism has not previously been identified, and this suggests that the core, hosting hot gas-rich lava, could have a greater lateral extent than previously considered.
Resumo:
The building of the Berlin Wall on 13 August 1961 had repercussions not only on the international scene, but also for the power relationship between state and society in the German Democratic Republic. This article considers the short-, medium- and long-term reactions of the East German population to the border closure from a personal and political perspective, examining key groups such as educated elites, workers, and young people. The closed society elicited a new deference in the short term, but the author argues for considerable continuities of low-level disruptive behavior before and after 13 August. In the longer term, there was a generation born behind the Wall which by simple habituation rather than a conscious decision was forced to accept the new contours of the geopolitical landscape created by the Wall.