933 resultados para Bayesian mixture model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research explores Bayesian updating as a tool for estimating parameters probabilistically by dynamic analysis of data sequences. Two distinct Bayesian updating methodologies are assessed. The first approach focuses on Bayesian updating of failure rates for primary events in fault trees. A Poisson Exponentially Moving Average (PEWMA) model is implemnented to carry out Bayesian updating of failure rates for individual primary events in the fault tree. To provide a basis for testing of the PEWMA model, a fault tree is developed based on the Texas City Refinery incident which occurred in 2005. A qualitative fault tree analysis is then carried out to obtain a logical expression for the top event. A dynamic Fault Tree analysis is carried out by evaluating the top event probability at each Bayesian updating step by Monte Carlo sampling from posterior failure rate distributions. It is demonstrated that PEWMA modeling is advantageous over conventional conjugate Poisson-Gamma updating techniques when failure data is collected over long time spans. The second approach focuses on Bayesian updating of parameters in non-linear forward models. Specifically, the technique is applied to the hydrocarbon material balance equation. In order to test the accuracy of the implemented Bayesian updating models, a synthetic data set is developed using the Eclipse reservoir simulator. Both structured grid and MCMC sampling based solution techniques are implemented and are shown to model the synthetic data set with good accuracy. Furthermore, a graphical analysis shows that the implemented MCMC model displays good convergence properties. A case study demonstrates that Likelihood variance affects the rate at which the posterior assimilates information from the measured data sequence. Error in the measured data significantly affects the accuracy of the posterior parameter distributions. Increasing the likelihood variance mitigates random measurement errors, but casuses the overall variance of the posterior to increase. Bayesian updating is shown to be advantageous over deterministic regression techniques as it allows for incorporation of prior belief and full modeling uncertainty over the parameter ranges. As such, the Bayesian approach to estimation of parameters in the material balance equation shows utility for incorporation into reservoir engineering workflows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian adaptive methods have been extensively used in psychophysics to estimate the point at which performance on a task attains arbitrary percentage levels, although the statistical properties of these estimators have never been assessed. We used simulation techniques to determine the small-sample properties of Bayesian estimators of arbitrary performance points, specifically addressing the issues of bias and precision as a function of the target percentage level. The study covered three major types of psychophysical task (yes-no detection, 2AFC discrimination and 2AFC detection) and explored the entire range of target performance levels allowed for by each task. Other factors included in the study were the form and parameters of the actual psychometric function Psi, the form and parameters of the model function M assumed in the Bayesian method, and the location of Psi within the parameter space. Our results indicate that Bayesian adaptive methods render unbiased estimators of any arbitrary point on psi only when M=Psi, and otherwise they yield bias whose magnitude can be considerable as the target level moves away from the midpoint of the range of Psi. The standard error of the estimator also increases as the target level approaches extreme values whether or not M=Psi. Contrary to widespread belief, neither the performance level at which bias is null nor that at which standard error is minimal can be predicted by the sweat factor. A closed-form expression nevertheless gives a reasonable fit to data describing the dependence of standard error on number of trials and target level, which allows determination of the number of trials that must be administered to obtain estimates with prescribed precision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variants of adaptive Bayesian procedures for estimating the 5% point on a psychometric function were studied by simulation. Bias and standard error were the criteria to evaluate performance. The results indicated a superiority of (a) uniform priors, (b) model likelihood functions that are odd symmetric about threshold and that have parameter values larger than their counterparts in the psychometric function, (c) stimulus placement at the prior mean, and (d) estimates defined as the posterior mean. Unbiasedness arises in only 10 trials, and 20 trials ensure constant standard errors. The standard error of the estimates equals 0.617 times the inverse of the square root of the number of trials. Other variants yielded bias and larger standard errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constant technology advances have caused data explosion in recent years. Accord- ingly modern statistical and machine learning methods must be adapted to deal with complex and heterogeneous data types. This phenomenon is particularly true for an- alyzing biological data. For example DNA sequence data can be viewed as categorical variables with each nucleotide taking four different categories. The gene expression data, depending on the quantitative technology, could be continuous numbers or counts. With the advancement of high-throughput technology, the abundance of such data becomes unprecedentedly rich. Therefore efficient statistical approaches are crucial in this big data era.

Previous statistical methods for big data often aim to find low dimensional struc- tures in the observed data. For example in a factor analysis model a latent Gaussian distributed multivariate vector is assumed. With this assumption a factor model produces a low rank estimation of the covariance of the observed variables. Another example is the latent Dirichlet allocation model for documents. The mixture pro- portions of topics, represented by a Dirichlet distributed variable, is assumed. This dissertation proposes several novel extensions to the previous statistical methods that are developed to address challenges in big data. Those novel methods are applied in multiple real world applications including construction of condition specific gene co-expression networks, estimating shared topics among newsgroups, analysis of pro- moter sequences, analysis of political-economics risk data and estimating population structure from genotype data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advances in three related areas of state-space modeling, sequential Bayesian learning, and decision analysis are addressed, with the statistical challenges of scalability and associated dynamic sparsity. The key theme that ties the three areas is Bayesian model emulation: solving challenging analysis/computational problems using creative model emulators. This idea defines theoretical and applied advances in non-linear, non-Gaussian state-space modeling, dynamic sparsity, decision analysis and statistical computation, across linked contexts of multivariate time series and dynamic networks studies. Examples and applications in financial time series and portfolio analysis, macroeconomics and internet studies from computational advertising demonstrate the utility of the core methodological innovations.

Chapter 1 summarizes the three areas/problems and the key idea of emulating in those areas. Chapter 2 discusses the sequential analysis of latent threshold models with use of emulating models that allows for analytical filtering to enhance the efficiency of posterior sampling. Chapter 3 examines the emulator model in decision analysis, or the synthetic model, that is equivalent to the loss function in the original minimization problem, and shows its performance in the context of sequential portfolio optimization. Chapter 4 describes the method for modeling the steaming data of counts observed on a large network that relies on emulating the whole, dependent network model by independent, conjugate sub-models customized to each set of flow. Chapter 5 reviews those advances and makes the concluding remarks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Testing for differences within data sets is an important issue across various applications. Our work is primarily motivated by the analysis of microbiomial composition, which has been increasingly relevant and important with the rise of DNA sequencing. We first review classical frequentist tests that are commonly used in tackling such problems. We then propose a Bayesian Dirichlet-multinomial framework for modeling the metagenomic data and for testing underlying differences between the samples. A parametric Dirichlet-multinomial model uses an intuitive hierarchical structure that allows for flexibility in characterizing both the within-group variation and the cross-group difference and provides very interpretable parameters. A computational method for evaluating the marginal likelihoods under the null and alternative hypotheses is also given. Through simulations, we show that our Bayesian model performs competitively against frequentist counterparts. We illustrate the method through analyzing metagenomic applications using the Human Microbiome Project data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises predominately in children and involves the pons, a structure that along with the midbrain and medulla makes up the brainstem. We have previously developed genetically engineered mouse models of brainstem glioma using the RCAS/Tv-a system by targeting PDGF-B overexpression, p53 loss, and H3.3K27M mutation to Nestin-expressing brainstem progenitor cells of the neonatal mouse. Here we describe a novel mouse model targeting these same genetic alterations to Pax3-expressing cells, which in the neonatal mouse pons consist of a Pax3+/Nestin+/Sox2+ population lining the fourth ventricle and a Pax3+/NeuN+ parenchymal population. Injection of RCAS-PDGF-B into the brainstem of Pax3-Tv-a mice at postnatal day 3 results in 40% of mice developing asymptomatic low-grade glioma. A mixture of low- and high-grade glioma results from injection of Pax3-Tv-a;p53(fl/fl) mice with RCAS-PDGF-B and RCAS-Cre, with or without RCAS-H3.3K27M. These tumors are Ki67+, Nestin+, Olig2+, and largely GFAP- and can arise anywhere within the brainstem, including the classic DIPG location of the ventral pons. Expression of the H3.3K27M mutation reduces overall H3K27me3 as compared with tumors without the mutation, similar to what has been previously shown in human and mouse tumors. Thus, we have generated a novel genetically engineered mouse model of DIPG, which faithfully recapitulates the human disease and represents a novel platform with which to study the biology and treatment of this deadly disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation contributes to the rapidly growing empirical research area in the field of operations management. It contains two essays, tackling two different sets of operations management questions which are motivated by and built on field data sets from two very different industries --- air cargo logistics and retailing.

The first essay, based on the data set obtained from a world leading third-party logistics company, develops a novel and general Bayesian hierarchical learning framework for estimating customers' spillover learning, that is, customers' learning about the quality of a service (or product) from their previous experiences with similar yet not identical services. We then apply our model to the data set to study how customers' experiences from shipping on a particular route affect their future decisions about shipping not only on that route, but also on other routes serviced by the same logistics company. We find that customers indeed borrow experiences from similar but different services to update their quality beliefs that determine future purchase decisions. Also, service quality beliefs have a significant impact on their future purchasing decisions. Moreover, customers are risk averse; they are averse to not only experience variability but also belief uncertainty (i.e., customer's uncertainty about their beliefs). Finally, belief uncertainty affects customers' utilities more compared to experience variability.

The second essay is based on a data set obtained from a large Chinese supermarket chain, which contains sales as well as both wholesale and retail prices of un-packaged perishable vegetables. Recognizing the special characteristics of this particularly product category, we develop a structural estimation model in a discrete-continuous choice model framework. Building on this framework, we then study an optimization model for joint pricing and inventory management strategies of multiple products, which aims at improving the company's profit from direct sales and at the same time reducing food waste and thus improving social welfare.

Collectively, the studies in this dissertation provide useful modeling ideas, decision tools, insights, and guidance for firms to utilize vast sales and operations data to devise more effective business strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-output Gaussian processes provide a convenient framework for multi-task problems. An illustrative and motivating example of a multi-task problem is multi-region electrophysiological time-series data, where experimentalists are interested in both power and phase coherence between channels. Recently, the spectral mixture (SM) kernel was proposed to model the spectral density of a single task in a Gaussian process framework. This work develops a novel covariance kernel for multiple outputs, called the cross-spectral mixture (CSM) kernel. This new, flexible kernel represents both the power and phase relationship between multiple observation channels. The expressive capabilities of the CSM kernel are demonstrated through implementation of 1) a Bayesian hidden Markov model, where the emission distribution is a multi-output Gaussian process with a CSM covariance kernel, and 2) a Gaussian process factor analysis model, where factor scores represent the utilization of cross-spectral neural circuits. Results are presented for measured multi-region electrophysiological data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surveys can collect important data that inform policy decisions and drive social science research. Large government surveys collect information from the U.S. population on a wide range of topics, including demographics, education, employment, and lifestyle. Analysis of survey data presents unique challenges. In particular, one needs to account for missing data, for complex sampling designs, and for measurement error. Conceptually, a survey organization could spend lots of resources getting high-quality responses from a simple random sample, resulting in survey data that are easy to analyze. However, this scenario often is not realistic. To address these practical issues, survey organizations can leverage the information available from other sources of data. For example, in longitudinal studies that suffer from attrition, they can use the information from refreshment samples to correct for potential attrition bias. They can use information from known marginal distributions or survey design to improve inferences. They can use information from gold standard sources to correct for measurement error.

This thesis presents novel approaches to combining information from multiple sources that address the three problems described above.

The first method addresses nonignorable unit nonresponse and attrition in a panel survey with a refreshment sample. Panel surveys typically suffer from attrition, which can lead to biased inference when basing analysis only on cases that complete all waves of the panel. Unfortunately, the panel data alone cannot inform the extent of the bias due to attrition, so analysts must make strong and untestable assumptions about the missing data mechanism. Many panel studies also include refreshment samples, which are data collected from a random sample of new

individuals during some later wave of the panel. Refreshment samples offer information that can be utilized to correct for biases induced by nonignorable attrition while reducing reliance on strong assumptions about the attrition process. To date, these bias correction methods have not dealt with two key practical issues in panel studies: unit nonresponse in the initial wave of the panel and in the

refreshment sample itself. As we illustrate, nonignorable unit nonresponse

can significantly compromise the analyst's ability to use the refreshment samples for attrition bias correction. Thus, it is crucial for analysts to assess how sensitive their inferences---corrected for panel attrition---are to different assumptions about the nature of the unit nonresponse. We present an approach that facilitates such sensitivity analyses, both for suspected nonignorable unit nonresponse

in the initial wave and in the refreshment sample. We illustrate the approach using simulation studies and an analysis of data from the 2007-2008 Associated Press/Yahoo News election panel study.

The second method incorporates informative prior beliefs about

marginal probabilities into Bayesian latent class models for categorical data.

The basic idea is to append synthetic observations to the original data such that

(i) the empirical distributions of the desired margins match those of the prior beliefs, and (ii) the values of the remaining variables are left missing. The degree of prior uncertainty is controlled by the number of augmented records. Posterior inferences can be obtained via typical MCMC algorithms for latent class models, tailored to deal efficiently with the missing values in the concatenated data.

We illustrate the approach using a variety of simulations based on data from the American Community Survey, including an example of how augmented records can be used to fit latent class models to data from stratified samples.

The third method leverages the information from a gold standard survey to model reporting error. Survey data are subject to reporting error when respondents misunderstand the question or accidentally select the wrong response. Sometimes survey respondents knowingly select the wrong response, for example, by reporting a higher level of education than they actually have attained. We present an approach that allows an analyst to model reporting error by incorporating information from a gold standard survey. The analyst can specify various reporting error models and assess how sensitive their conclusions are to different assumptions about the reporting error process. We illustrate the approach using simulations based on data from the 1993 National Survey of College Graduates. We use the method to impute error-corrected educational attainments in the 2010 American Community Survey using the 2010 National Survey of College Graduates as the gold standard survey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tests for dependence of continuous, discrete and mixed continuous-discrete variables are ubiquitous in science. The goal of this paper is to derive Bayesian alternatives to frequentist null hypothesis significance tests for dependence. In particular, we will present three Bayesian tests for dependence of binary, continuous and mixed variables. These tests are nonparametric and based on the Dirichlet Process, which allows us to use the same prior model for all of them. Therefore, the tests are “consistent” among each other, in the sense that the probabilities that variables are dependent computed with these tests are commensurable across the different types of variables being tested. By means of simulations with artificial data, we show the effectiveness of the new tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large eddy simulation is performed to study the deflagration to detonation transition phenomenon in an obstructed channel containing premixed stoichiometric hydrogen–air mixture. Two-dimensional filtered reactive Navier–Stokes equations are solved utilizing the artificially thickened flame approach (ATF) for modeling sub-grid scale combustion. To include the effect of induction time, a 27-step detailed mechanism is utilized along with an in situ adaptive tabulation (ISAT) method to reduce the computational cost due to the detailed chemistry. The results show that in the slow flame propagation regime, the flame–vortex interaction and the resulting flame folding and wrinkling are the main mechanisms for the increase of the flame surface and consequently acceleration of the flame. Furthermore, at high speed, the major mechanisms responsible for flame propagation are repeated reflected shock–flame interactions and the resulting baroclinic vorticity. These interactions intensify the rate of heat release and maintain the turbulence and flame speed at high level. During the flame acceleration, it is seen that the turbulent flame enters the ‘thickened reaction zones’ regime. Therefore, it is necessary to utilize the chemistry based combustion model with detailed chemical kinetics to properly capture the salient features of the fast deflagration propagation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of new learning models has been of great importance throughout recent years, with a focus on creating advances in the area of deep learning. Deep learning was first noted in 2006, and has since become a major area of research in a number of disciplines. This paper will delve into the area of deep learning to present its current limitations and provide a new idea for a fully integrated deep and dynamic probabilistic system. The new model will be applicable to a vast number of areas initially focusing on applications into medical image analysis with an overall goal of utilising this approach for prediction purposes in computer based medical systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’obiettivo di tutto il mio lavoro è stato quello di misurare le sezioni d’urto di produzione dei bosoni deboli W ± e Z nei loro decadimenti leptonici (e, μ) coi dati raccolti dal rivelatore ATLAS a LHC con un’energia del centro di massa di √s = 13 TeV relativi all’estate 2015. Gli eventi selezionati sono gli stessi di quelli del recente articolo della Collaborazione ATLAS sullo stesso argomento, in modo anche da poter operare un confronto tra i risultati ottenuti. Confronto peraltro necessario, poichè i risultati sono stati ottenuti con due metodologie differenti: tradizionale (classica) per l’articolo, bayesiana in questa tesi. L’approccio bayesiano permette di combinare i vari canali e di trattare gli effetti sistematici in modo del tutto naturale. I risultati ottenuti sono in ottimo accordo con le predizioni dello Standard Model e con quelli pubblicati da ATLAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When something unfamiliar emerges or when something familiar does something unexpected people need to make sense of what is emerging or going on in order to act. Social representations theory suggests how individuals and society make sense of the unfamiliar and hence how the resultant social representations (SRs) cognitively, emotionally, and actively orient people and enable communication. SRs are social constructions that emerge through individual and collective engagement with media and with everyday conversations among people. Recent developments in text analysis techniques, and in particular topic modeling, provide a potentially powerful analytical method to examine the structure and content of SRs using large samples of narrative or text. In this paper I describe the methods and results of applying topic modeling to 660 micronarratives collected from Australian academics / researchers, government employees, and members of the public in 2010-2011. The narrative fragments focused on adaptation to climate change (CC) and hence provide an example of Australian society making sense of an emerging and conflict ridden phenomena. The results of the topic modeling reflect elements of SRs of adaptation to CC that are consistent with findings in the literature as well as being reasonably robust predictors of classes of action in response to CC. Bayesian Network (BN) modeling was used to identify relationships among the topics (SR elements) and in particular to identify relationships among topics, sentiment, and action. Finally the resulting model and topic modeling results are used to highlight differences in the salience of SR elements among social groups. The approach of linking topic modeling and BN modeling offers a new and encouraging approach to analysis for ongoing research on SRs.