948 resultados para BONDED DIMETAL UNITS
Resumo:
In this paper we present matrices over unitary finite commutative local rings connected through an ascending chain of containments, whose elements are units of the corresponding rings in the chain such that the McCoy ranks are the largest ones.
Resumo:
This work reports the experimental evaluation of physical and gas permeation parameters of four spinel-based investments developed with or without inclusion of sacrificial fillers. Data were compared with those of three commercial formulations. Airflow tests were conducted from 27 to 546°C, and permeability coefficients were fitted from Forchheimer's equation. Skeletal densities found for spinel- (ρs = 3635 ± 165 kg/m3) and phosphate-bonded (ρs = 2686 ± 11 kg/m3) samples were in agreement with the literature. The developed investments were more porous and less permeable than commercial brands, and the differences were ascribed to the different pore morphologies and hydraulic pore sizes of ceramic matrices. The inclusion of both fibers and microbeads resulted in increases of total porosity (42.6–56.6%) and of Darcian permeability coefficient k1 (0.76 × 10−14–7.03 × 10−14 m2). Air permeation was hindered by increasing flow temperatures, and the effect was related to the influence of gas viscosity on ΔP, in accordance with Darcy's law. Casting quality with molten titanium (CP Ti) was directly proportional to the permeability level of the spinel-based investments. However, the high reactivity of the silica-based investment RP and the formation of α-case during casting hindered the benefits of the highest permeability level of this commercial brand.
Resumo:
Composite resin is a dental material susceptible to color change over time which limits the longevity of restorations made with this material. The influence of light curing units and different fluoride mouthrinses on superficial morphology and color stability of a nanofilled composite resin was evaluated. Specimens (N = 150) were prepared and polished. The experimental groups were divided according to the type of light source (halogen and LED) and immersion media (artificial saliva, 0.05% sodium fluoride solution-manipulated, Fluordent Reach, Oral B, Fluorgard). Specimens remained in artificial saliva for 24-h baseline. For 60 days, they were immersed in solutions for 1 min. Color readout was taken at baseline and after 60 days of immersion. Surface morphology was analyzed by Scanning Electron Microscopy (SEM) after 60 days of immersion. Color change data were submitted to two-way Analysis of Variance and Tukey tests (α = 0.05). Surface morphology was qualitatively analyzed. The factor light source presented no significant variability (P = 0.281), the immersion media, significant variability (P < 0.001) and interaction between factors, no significant variability (P = 0.050). According to SEM observations, no difference was noted in the surface of the specimens polymerized by different light sources, irrespective of the immersion medium. It was concluded that the light source did not influence the color stability of composite, irrespective of the immersion media, and among the fluoride solutions analyzed, Fluorgard was the one that promoted the greatest color change, however, this was not clinically perceptible. The immersion media did not influence the morphology of the studied resin. Microsc. Res. Tech. 77:941–946, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Aims: The study evaluated the influence of light curing units and immersionmedia on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M)through the EDX analysis and SEM evaluation. Light curing units with different power densitiesand mode of application used were XL 3000 (480 mW/cm2), Jet Lite 4000 Plus (1230mW/cm2), andUltralume Led 5 (790 mW/cm2) and immersion media were artificial saliva, Coke1, tea and coffee,totaling 12 experimental groups. Specimens (10 mm 3 2 mm) were immersed in each respectivesolution for 5 min, three times a day, during 60 days and stored in artificial saliva at 378C 6 18Cbetween immersion periods. Topography and chemical analysis was qualitative. Findings: Groupsimmersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calciumat the material surface. Regarding coffee, there was a reasonable chemical degradation with loss ofload particles and deposition of ions. For tea, superficial degradation occurred in specific areaswith deposition of calcium, carbon, potassium and phosphorus. For Coke1, excessive matrix degra-dation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion:Light curing units did not influence the superficial morphology of composite resin tested, but theimmersion beverages did. Coke1affected material’s surface more than did the other tested drinks.Microsc. Res. Tech. 73:176–181, 2010.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this in vitro study was to use strain gauge (SG) analysis to compare the effects of the implant-abutment joint, the coping, and the location of load on strain distribution in the bone around implants supporting 3-unit fixed partial prostheses. Three external hexagon (EH) implants and 3 internal hexagon (IH) implants were inserted into 2 polyurethane blocks. Microunit abutments were screwed onto their respective implant groups. Machined cobalt-chromium copings and plastic copings were screwed onto the abutments, which received standard wax patterns. The wax patterns were cast in a cobalt-chromium alloy (n = 5): group 1 = EH/machined. group 2 = EH/plastic, group 3 = IH/machined, and group 4 = IH/plastic. Four SGs were bonded onto the surface of the block tangentially to the implants. Each metallic structure was screwed onto the abutments and an axial load of 30 kg was applied at 5 predetermined points. The magnitude of microstrain on each SG was recorded in units of microstrain (mu epsilon). The data were analyzed using 3-factor repeated measures analysis of variance and a Tukey test (alpha = 0.05). The results showed statistically significant differences for the type of implant-abutment joint, loading point, and interaction at the implant-abutment joint/loading point. The IH connection showed higher microstrain values than the EH connection. It was concluded that the type of coping did not interfere in the magnitude of microstrain, but the implant/abutment joint and axial loading location influenced this magnitude.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Length of resin tags yielded by utilization of an one-step conventional adhesive system and self-etching adhesive system on unground enamel was observed. In study Groups I and III, the enamel surface was etched for 60 seconds with 35% phosphoric acid gel and adhesive systems PQ1 (Ultradent Products, Inc) and Adper Prompt L Pop (3M/ESPE) were applied. Adper Prompt L Pop (3M/ESPE) was also applied in Group II in accordance with the manufacturer's recommendations. After application of these adhesive systems to dental enamel, specimens were prepared for light microscopy analysis to ascertain degree of penetration (x400). The results were submitted to an analysis of variance at the 5% level; whenever there was significance, the Tukey test was applied at the 5% level. It was found that acid etching prior to application of conventional and self-etching adhesive materials provided higher penetration of the adhesive into the unground enamel surface compared to that achieved solely by application of self-etching adhesive.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Preterm infants in neonatal intensive care units frequently receive red blood cells (RBC) transfusions due to the anemia of prematurity. A number of variables related to gestational age, severity of illness and transfusion practices adopted in the neonatal unit where the neonate was born may contribute to the prescription of RBC transfusions. This study aimed to analyse the frequency and factors associated with RBC transfusions in very-low-birth-weight preterm infants. A prospective cohort of 4283 preterm infants (gestational age: 29.9 ± 2.9 weeks; birth weight: 1084 ± 275 g) carried out at 16 university hospitals in Brazil between January 2009 and December 2011 was analysed. Factors associated with RBC transfusions were evaluated using univariate and multiple logistic regression analysis. A total of 2208 (51.6%) infants received RBC transfusions (variation per neonatal unit: 34.1% to 66.4%). RBC transfusions were significantly associated with gestational age (OR: -1.098; 95%CI: -1.12 to -1.04), SNAPPE II score (1.01; 1.00-1.02), apnea (1.69; 1.34-2.14), pulmonary hemorrhage (2.65; 1.74-4.031), need for oxygen at 28 days of life (1.56; 1.17-2.08), clinical sepsis (3.22; 2.55-4.05), necrotising enterocolitis (3.80; 2.26-6.41), grades III/IV intraventricular hemorrhage (1.64; 1.05-2.58), mechanical ventilation (2.27; 1.74-2.97), use of umbilical catheter (1.86; 1.35-2.57), parenteral nutrition (2.06; 1.27-3.33), >60 days of hospitalization (5.29; 4.02-6.95) and the neonatal unit where the neonate was born. The frequency of RBC transfusions varied among neonatal intensive care units. Even after adjusting for adverse health conditions and therapeutic interventions, the neonatal unit continued to influence transfusion practices in very-low birth-weight infants.
Resumo:
In this research the aim was produce a particleboard with alternative materials and evaluated its physical and mechanical characteristics. The raw materials used are residues from sucarcane bagasse (SC) (Saccharum officinarum) and stem leaves of bamboo (B) (Dendrocalamus giganteus), bonded with a bi component adhesive based on castor oil. It was produced particleboards with five different traces: 100% SC, 75% SC+25% B, 50% SC+50% B, 25% SC +75%B and 100 % B. Their physical and mechanical characteristics were evaluated accordingly to Brazilian standard NBR 14810-3. Regarding the results obtained, it can be detached that for physical and mechanical evaluation it is evident a negative relation among the amount the sugarcane bagasse and their physical and mechanical characteristics, that is particleboards with low concentrations of sugarcane bagasse had better results. However all particleboards could be recommended for use as sealing particleboards in the segment of civil construction.
Resumo:
With the currently strict environmental law in present days, researchers and industries are seeking to reduce the amount of cutting fluid used in machining. Minimum quantity lubrication is a potential alternative to reduce environmental impacts and overall process costs. This technique can substantially reduce cutting fluids in grinding, as well as provide better performance in relation to conventional cutting fluid application (abundant fluid flow). The present work aims to test the viability of minimum quantity lubrication (with and without water) in grinding of advanced ceramics, when compared to conventional method (abundant fluid flow). Measured output variables were grinding power, surface roughness, roundness errors and wheel wear, as well as scanning electron micrographs. The results show that minimum quantity lubrication with water (1:1) was superior to conventional lubrication-cooling in terms of surface quality, also reducing wheel wear, when compared to the other methods tested.
Resumo:
The aim of this study was to determine whether image artifacts caused by orthodontic metal accessories interfere with the accuracy of 3D CBCT model superimposition. A human dry skull was subjected three times to a CBCT scan: at first without orthodontic brackets (T1), then with stainless steel brackets bonded without (T2) and with orthodontic arch wires (T3) inserted into the brackets' slots. The registration of image surfaces and the superimposition of 3D models were performed. Within-subject surface distances between T1-T2, T1-T3 and T2-T3 were computed and calculated for comparison among the three data sets. The minimum and maximum Hausdorff Distance units (HDu) computed between the corresponding data points of the T1 and T2 CBCT 3D surface images were 0.000000 and 0.049280 HDu, respectively, and the mean distance was 0.002497 HDu. The minimum and maximum Hausdorff Distances between T1 and T3 were 0.000000 and 0.047440 HDu, respectively, with a mean distance of 0.002585 HDu. In the comparison between T2 and T3, the minimum, maximum and mean Hausdorff Distances were 0.000000, 0.025616 and 0.000347 HDu, respectively. In the current study, the image artifacts caused by metal orthodontic accessories did not compromise the accuracy of the 3D model superimposition. Color-coded maps of overlaid structures complemented the computed Hausdorff Distances and demonstrated a precise fusion between the data sets.
Resumo:
The hydrolysis of pyridoxalrhodanine in a basic medium containing the dimethylthallium(III) cation afforded the compound [TlMe2(L)]center dot H2O (1.H2O) [HL = 5-(hydroxymethyl)-8-methyl-3-thiol-7-azacoumarin]. This compound was characterized in solid state by IR spectroscopy and in solution by H-1 and C-13{H-1} NMR spectrometry. X-ray diffraction showed that the crystal consists of associated TlMe2(L) units and hydrogen bonded water molecules. The L- anion is bound to the metal mainly by a bridging S atom [Tl-S = 2.9458(18) angstrom; 2.9616(16) angstrom], although secondary interactions through O atoms (Tl-O: 2.861(5); 2.900(5) angstrom)] are also present. The longer Tl-O interaction and the hydrogen bonds of the water molecules give rise to a tridimensional polymeric structure. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Objectives. To purpose a method for predicting the shrinkage stress development in the adhesive layer of resin-composite cylinders that shrink bonded to a single flat surface, by measuring the deflection of a glass coverslip caused by the shrinkage of the bonded cylinders. The correlation between the volume of the bonded resin-composite and the stress-peak was also investigated. Methods. A glass coverslip deflection caused by the shrinkage of a bonded resin-composite cylinder (diameter: d = 8 mm, 4 mm, or 2 mm, height: h = 4 mm, 2 mm, 1 mm, or 0.5 mm) was measured, and the same set-up was simulated by finite element analysis (3D-FEA). Stresses generated in the adhesive layer were plotted versus two geometric variables of the resin-composite cylinder (C-Factor and volume) to verify the existence of correlations between them and stresses. Results. The FEA models were validated. A significant correlation (p < 0.01, Pearson's test) between the stress-peak and the coverslip deflection when the resin-composites were grouped by diameter was found for diameters of 2 and 4 mm. The stress-peak of the whole set of data showed a logarithmic correlation with the bonded resin-composite volume (p < 0.001, Pearson's test), but did not correlate with the C-Factor. Significance. The described method should be considered for standardizing the stress generated by the shrinkage of resin-composite blocks bonded to a single flat surface. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.