995 resultados para B., A. P.
Resumo:
<p>The effect of temperature on the structure of the ice Ih (0001) surface is considered through a series of molecular dynamics simulations on an ice slab. At relatively low temperatures (200K) a small fraction of surface self-interstitials (i.e. admolecules) appear that are formed exclusively from molecules leaving the outermost bilayer. At higher temperatures (ca. 250 K), vacancies start to appear in the inner part of the outermost bilayer exposing the underlying bilayer and providing sites with a high concentration of the dangling hydrogen bonds. Around 250-260 K aggregates of molecules formed on top of the outermost bilayer from self-interstitials become more mobile and have diffusivities approaching that of liquid water. At similar to 270-280 K the inner bilayer of one surface noticeably destructures and it appears that at above 285 K both surfaces are melting. The observed disparity in the onset of melting between the two sides of the slab is rationalised by considering the relationship between surface energy and the spatial distribution of protons at the surface; thermodynamic stability is conferred on the surface by maximising separations between dangling protons at the crystal exterior. Local hotspots associated with a high dangling proton density are suggested to be susceptible to pre-melting and may be more efficient at trapping species at the external surface than regions with low concentrations of protons thus potentially helping ice particles to catalyse reactions. A preliminary conclusion of this work is that only about 10-20 K below the melting temperature of the particular water potential employed is major disruption of the crystalline lattice noted which could be interpreted as being "liquid", the thickness of this film being about a nanometre.p>
Resumo:
Patients' desire for hastened death within the context of advanced disease and palliative care is a controversial topic, frequently discussed in the international literature. Much of the discussion has focused on opinion and debate about ethical matters related to hastened death. Not many research studies seem to have specifically targeted why palliative care patients may desire hastened death, and few have focused on clinical guidelines for responding to such requests.
Resumo:
<p>The aim of the present study was to investigate the responses of phase I and II biotransformation enzymes and levels of PAHs in the Mediterranean mussel (Mytilus galloprovincialis, Lamarck, 1819) collected from three sites at different distance from an oil refinery. Phase I enzyme activities as NAD(P)H-cyt c red, NADH ferry red, B(a)PMO and phase II as UDPGT. GST were measured in digestive gland while 16 PAHs (US-EPA) in whole soft tissue. An added value to the data obtained in the present study rely on the RDA analysis which showed close correlations between PAHs levels and phase I enzyme activities in mussels collected in front of the refinery. And again a significant spatial correlation between B(a)P levels and NADPH-cyt c red activities was observed using linear models. No differences among sites for B(a) PMO and phase II GST activities were observed, while the application of UDPGT as biomarkers requires further investigation. (C) 2012 Elsevier Ltd. All rights reserved.p>
Resumo:
<p>Background: In recent years, much progress has been made in the treatment of multiple myeloma. However, a major limitation of existing chemotherapeutic drugs is the eventual emergence of resistance; hence, the development of novel agents with new mechanisms of action is pertinent. Here, we describe the activity and mechanism of action of pyrrolo-1,5-benzoxazepine-15 (PBOX-15), a novel microtubule-targeting agent, in multiple myeloma cells.p> <p>Methods: The anti-myeloma activity of PBOX-15 was assessed using NCI-H929, KMS11, RPMI8226, and U266 cell lines, and primary myeloma cells. Cell cycle distribution, apoptosis, cytochrome c release, and mitochondrial inner membrane depolarisation were analysed by flow cytometry; gene expression analysis was carried out using TaqMan Low Density Arrays; and expression of caspase-8 and Bcl-2 family of proteins was assessed by western blot analysis.p> <p>Results: Pyrrolo-1,5-benzoxazepine-15 induced apoptosis in ex vivo myeloma cells and in myeloma cell lines. Death receptor genes were upregulated in both NCI-H929 and U266 cell lines, which displayed the highest and lowest apoptotic responses, respectively, following treatment with PBOX-15. The largest increase was detected for the death receptor 5 (DR5) gene, and cotreatment of both cell lines with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the DR5 ligand, potentiated the apoptotic response. In NCI-H929 cells, PBOX-15-induced apoptosis was shown to be caspase-8 dependent, with independent activation of extrinsic and intrinsic apoptotic pathways. A caspase-8-dependent decrease in expression of Bim(EL) preceded downregulation of other Bcl-2 proteins (Bid, Bcl-2, Mcl-1) in PBOX-15-treated NCI-H929 cells.p> <p>Conclusion: PBOX-15 induces apoptosis and potentiates TRAIL-induced cell death in multiple myeloma cells. Thus, PBOX-15 represents a promising agent, with a distinct mechanism of action, for the treatment of this malignancy. British Journal of Cancer (2011) 104, 281-289. doi: 10.1038/sj.bjc.6606035 www.bjcancer.com Published online 21 December 2010 (C) 2011 Cancer Research UKp>
Resumo:
<p>The phragmoplast coordinates cytokinesis in plants [1]. It directs vesicles to the midzone, the site where they coalesce to form the new cell plate. Failure in phragmoplast function results in aborted or incomplete cytokinesis leading to embryo lethality, morphological defects, or multinucleate cells [2, 3]. The asymmetry of vesicular traffic is regulated by microtubules [1, 4, 5, 6], and the current model suggests that this asymmetry is established and maintained through treadmilling of parallel microtubules. However, we have analyzed the behavior of microtubules in the phragmoplast using live-cell imaging coupled with mathematical modeling and dynamic simulations and report that microtubules initiate randomly in the phragmoplast and that the majority exhibit dynamic instability with higher turnover rates nearer to the midzone. The directional transport of vesicles is possible because the majority of the microtubules polymerize toward the midzone. Here, we propose the first inclusive model where microtubule dynamics and phragmoplast asymmetry are consistent with the localization and activity of proteins known to regulate microtubule assembly and disassembly.p>
Resumo:
<p>Programmed cell death (PCD) is executed by proteases, which cleave diverse proteins thus modulating their biochemical and cellular functions. Proteases of the caspase family and hundreds of caspase substrates constitute a major part of the PCD degradome in animals(1,2). Plants lack close homologues of caspases, but instead possess an ancestral family of cysteine proteases, metacaspases(3,4). Although metacaspases are essential for PCD(5-7), their natural substrates remain unknown(4,8). Here we show that metacaspase mcII-Pa cleaves a phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), during both developmental and stress-induced PCD. TSN knockdown leads to activation of ectopic cell death during reproduction, impairing plant fertility. Surprisingly, human TSN (also known as p100 or SND1), a multifunctional regulator of gene expression(9-15), is cleaved by caspase-3 during apoptosis. This cleavage impairs the ability of TSN to activate mRNA splicing, inhibits its ribonuclease activity and is important for the execution of apoptosis. Our results establish TSN as the first biological substrate of metacaspase and demonstrate that despite the divergence of plants and animals from a common ancestor about one billion years ago and their use of distinct PCD pathways, both have retained a common mechanism to compromise cell viability through the cleavage of the same substrate, TSN.p>
Resumo:
<p>As an essential constituent of the outer membrane of Gram-negative bacteria, lipopolysaccharide contributes significantly to virulence and antibiotic resistance. The lipopolysaccharide biosynthetic pathway therefore serves as a promising therapeutic target for antivirulence drugs and antibiotic adjuvants. Here we report the structural-functional studies of D-glycero-beta-D-manno-heptose 7-phosphate kinase (HldA), an absolutely conserved enzyme in this pathway, from Burkholderia cenocepacia. HldA is structurally similar to members of the PfkB carbohydrate kinase family and appears to catalyze heptose phosphorylation via an in-line mechanism mediated mainly by a conserved aspartate, Asp270. Moreover, we report the structures of HldA in complex with two potent inhibitors in which both inhibitors adopt a folded conformation and occupy the nucleotide-binding sites. Together, these results provide important insight into the mechanism of HldA-catalyzed heptose phosphorylation and necessary information for further development of HldA inhibitors.p>
Resumo:
Clinical treatment goals of type 1 diabetes mellitus (T1DM) have changed since the Diabetes Control and Complications Trial (DCCT) demonstrated reduced long-term complications with intensive diabetes therapy. There have been few longitudinal studies to describe the clinical course of T1DM in the age of intensive therapy. Our objective was to describe the current-day clinical course of T1DM.
Resumo:
In this paper, we introduce an application of matrix factorization to produce corpus-derived, distributional
models of semantics that demonstrate cognitive plausibility. We find that word representations
learned by Non-Negative Sparse Embedding (NNSE), a variant of matrix factorization, are sparse,
effective, and highly interpretable. To the best of our knowledge, this is the first approach which
yields semantic representation of words satisfying these three desirable properties. Though extensive
experimental evaluations on multiple real-world tasks and datasets, we demonstrate the superiority
of semantic models learned by NNSE over other state-of-the-art baselines.
Resumo:
The operations and processes that the human brain employs to achieve fast visual categorization remain a matter of debate. A first issue concerns the timing and place of rapid visual categorization and to what extent it can be performed with an early feed-forward pass of information through the visual system. A second issue involves the categorization of stimuli that do not reach visual awareness. There is disagreement over the degree to which these stimuli activate the same early mechanisms as stimuli that are consciously perceived. We employed continuous flash suppression (CFS), EEG recordings, and machine learning techniques to study visual categorization of seen and unseen stimuli. Our classifiers were able to predict from the EEG recordings the category of stimuli on seen trials but not on unseen trials. Rapid categorization of conscious images could be detected around 100?ms on the occipital electrodes, consistent with a fast, feed-forward mechanism of target detection. For the invisible stimuli, however, CFS eliminated all traces of early processing. Our results support the idea of a fast mechanism of categorization and suggest that this early categorization process plays an important role in later, more subtle categorizations, and perceptual processes.
Resumo:
Synchrophasor systems will play a crucial role in next generation Smart Grid monitoring, protection and control. However these systems also introduce a multitude of potential vulnerabilities from malicious and inadvertent attacks, which may render erroneous operation or severe damage. This paper proposes a Synchrophasor Specific Intrusion Detection System (SSIDS) for malicious cyber attack and unintended misuse. The SSIDS comprises a heterogeneous whitelist and behavior-based approach to detect known attack types and unknown and so-called ‘zero-day’ vulnerabilities and attacks. The paper describes reconnaissance, Man-in-the-Middle (MITM) and Denial-of-Service (DoS) attack types executed against a practical synchrophasor system which are used to validate the real-time effectiveness of the proposed SSIDS cyber detection method.