988 resultados para Avatar, 3D, Kinect
Resumo:
Recovering a volumetric model of a person, car, or other object of interest from a single snapshot would be useful for many computer graphics applications. 3D model estimation in general is hard, and currently requires active sensors, multiple views, or integration over time. For a known object class, however, 3D shape can be successfully inferred from a single snapshot. We present a method for generating a ``virtual visual hull''-- an estimate of the 3D shape of an object from a known class, given a single silhouette observed from an unknown viewpoint. For a given class, a large database of multi-view silhouette examples from calibrated, though possibly varied, camera rigs are collected. To infer a novel single view input silhouette's virtual visual hull, we search for 3D shapes in the database which are most consistent with the observed contour. The input is matched to component single views of the multi-view training examples. A set of viewpoint-aligned virtual views are generated from the visual hulls corresponding to these examples. The 3D shape estimate for the input is then found by interpolating between the contours of these aligned views. When the underlying shape is ambiguous given a single view silhouette, we produce multiple visual hull hypotheses; if a sequence of input images is available, a dynamic programming approach is applied to find the maximum likelihood path through the feasible hypotheses over time. We show results of our algorithm on real and synthetic images of people.
Resumo:
Alignment is a prevalent approach for recognizing 3D objects in 2D images. A major problem with current implementations is how to robustly handle errors that propagate from uncertainties in the locations of image features. This thesis gives a technique for bounding these errors. The technique makes use of a new solution to the problem of recovering 3D pose from three matching point pairs under weak-perspective projection. Furthermore, the error bounds are used to demonstrate that using line segments for features instead of points significantly reduces the false positive rate, to the extent that alignment can remain reliable even in cluttered scenes.
Resumo:
Análise, de forma visual, de como algumas grandezas físico-químico estão presentes na interface proteica. A proteína é mostrada em 3 dimensões(3D). Cada região da cadeia proteic é colorida com uma cor diferente, representando a variaçao de características físico-químicas na cadeia
Análise do grau de conservação de resíduos em proteínas com estrutura 3D resolvida utilizando o SMS.
Resumo:
HSSP e entropia relativa. Módulos do SMS para análise de conservação. Discussão e trabalhos futuros.
Resumo:
Brown D. S. and Priest E. R. 2001, The topological behaviour of 3D null points in the Sun's corona, Astronomy and Astrophysics, 367, 339-346
Resumo:
Morgan, H.; Habbal, S. R., An empirical 3D model of the large-scale coronal structure based on the distribution of H? filaments on the solar disk, Astronomy and Astrophysics, Volume 464, Issue 1, March II 2007, pp.357-365
Resumo:
Liu, Yonghuai. Automatic 3d free form shape matching using the graduated assignment algorithm. Pattern Recognition, vol. 38, no. 10, pp. 1615-1631, 2005.
Resumo:
A method is proposed that can generate a ranked list of plausible three-dimensional hand configurations that best match an input image. Hand pose estimation is formulated as an image database indexing problem, where the closest matches for an input hand image are retrieved from a large database of synthetic hand images. In contrast to previous approaches, the system can function in the presence of clutter, thanks to two novel clutter-tolerant indexing methods. First, a computationally efficient approximation of the image-to-model chamfer distance is obtained by embedding binary edge images into a high-dimensional Euclide an space. Second, a general-purpose, probabilistic line matching method identifies those line segment correspondences between model and input images that are the least likely to have occurred by chance. The performance of this clutter-tolerant approach is demonstrated in quantitative experiments with hundreds of real hand images.
Resumo:
Estimation of 3D hand pose is useful in many gesture recognition applications, ranging from human-computer interaction to automated recognition of sign languages. In this paper, 3D hand pose estimation is treated as a database indexing problem. Given an input image of a hand, the most similar images in a large database of hand images are retrieved. The hand pose parameters of the retrieved images are used as estimates for the hand pose in the input image. Lipschitz embeddings of edge images into a Euclidean space are used to improve the efficiency of database retrieval. In order to achieve interactive retrieval times, similarity queries are initially performed in this Euclidean space. The paper describes ongoing work that focuses on how to best choose reference images, in order to improve retrieval accuracy.
Resumo:
Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation approaches. This paper describes an alternative formulation for dense scene flow estimation that provides convincing results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. To handle the aperture problems inherent in the estimation task, a multi-scale method along with a novel adaptive smoothing technique is used to gain a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization-two problems commonly associated with basic multi-scale approaches. Internally, the framework generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than standard stereo and optical flow methods allow. Experiments with synthetic and real test data demonstrate the effectiveness of the approach.
Resumo:
Hand signals are commonly used in applications such as giving instructions to a pilot for airplane take off or direction of a crane operator by a foreman on the ground. A new algorithm for recognizing hand signals from a single camera is proposed. Typically, tracked 2D feature positions of hand signals are matched to 2D training images. In contrast, our approach matches the 2D feature positions to an archive of 3D motion capture sequences. The method avoids explicit reconstruction of the 3D articulated motion from 2D image features. Instead, the matching between the 2D and 3D sequence is done by backprojecting the 3D motion capture data onto 2D. Experiments demonstrate the effectiveness of the approach in an example application: recognizing six classes of basketball referee hand signals in video.
Resumo:
We developed an automated system that registers chest CT scans temporally. Our registration method matches corresponding anatomical landmarks to obtain initial registration parameters. The initial point-to-point registration is then generalized to an iterative surface-to-surface registration method. Our "goodness-of-fit" measure is evaluated at each step in the iterative scheme until the registration performance is sufficient. We applied our method to register the 3D lung surfaces of 11 pairs of chest CT scans and report promising registration performance.
Resumo:
An approach for estimating 3D body pose from multiple, uncalibrated views is proposed. First, a mapping from image features to 2D body joint locations is computed using a statistical framework that yields a set of several body pose hypotheses. The concept of a "virtual camera" is introduced that makes this mapping invariant to translation, image-plane rotation, and scaling of the input. As a consequence, the calibration matrices (intrinsics) of the virtual cameras can be considered completely known, and their poses are known up to a single angular displacement parameter. Given pose hypotheses obtained in the multiple virtual camera views, the recovery of 3D body pose and camera relative orientations is formulated as a stochastic optimization problem. An Expectation-Maximization algorithm is derived that can obtain the locally most likely (self-consistent) combination of body pose hypotheses. Performance of the approach is evaluated with synthetic sequences as well as real video sequences of human motion.
Resumo:
Ongoing work towards appearance-based 3D hand pose estimation from a single image is presented. A large database of synthetic hand views is generated using a 3D hand model and computer graphics. The views display different hand shapes as seen from arbitrary viewpoints. Each synthetic view is automatically labeled with parameters describing its hand shape and viewing parameters. Given an input image, the system retrieves the most similar database views, and uses the shape and viewing parameters of those views as candidate estimates for the parameters of the input image. Preliminary results are presented, in which appearance-based similarity is defined in terms of the chamfer distance between edge images.