859 resultados para Artificial wetland abatement
Resumo:
Waved albatrosses often relocate their eggs during incubation by placing the egg between the tarsi and shuffling forward. This behavior frequently results in eggs becoming lodged between rocks, accounting for at least 10%, and perhaps as much as 80%, of breeding failures. Because albatross populations worldwide are currently threatened, artificial means of augmenting reproductive success may be necessary to mitigate losses caused by anthropogenic effects. We characterize the frequency and extent of egg movement; test several hypotheses related to microhabitat, timing, and incubation location to explain the behavior; and investigate the utility of repositioning lodged eggs in a location in which breeding birds might resume incubation. Egg rescue increased both the likelihood of continued incubation as well as the hatching rate in our experiment, and provides an efficient, low-cost management option for this species.
Resumo:
Wetlands in southern Alberta are often managed to benefit waterfowl and cattle production. Effects on other species usually are not examined. I determined the effect of managed wetlands on upland-nesting shorebirds in southern Alberta by comparing numbers of breeding willets (Catoptrophorus semipalmatus), marbled godwits (Limosa fedoa), and long-billed curlews (Numenius americanus) among areas of managed wetlands, natural wetland basins, and no wetland basins from 1995 to 2000. Surveys were carried out at 21 sites three times each year. Nine to ten of these areas (each 2 km2) were searched for nests annually from 1998–2000. Numbers of willets and marbled godwits and their nests were always highest in areas with managed wetlands, probably because almost all natural wetland basins were dry in this region in most years. Densities of willets seen during pre-incubation surveys averaged 2.3 birds/km2 in areas of managed wetlands, 0.4 in areas of natural wetland basins, and 0.1 in areas with no wetland basins. Nest densities of willets (one search each season) averaged 1.5, 0.9, and 0.3 nests/km2 in areas of managed, natural, and no wetland basins, respectively. Similarly, pre-incubation surveys averaged 1.6, 0.6, and 0.2 godwits/km2 in areas of managed, natural, and no wetland basins, and 1.2, 0.3, and 0.1 godwit nests/km2. For long-billed curlews, pre-incubation surveys averaged 0.1, 0.2, and 0.1 birds/km2, and 0, 0.2, and 0 nests/km2. Nest success was similar in areas with and without managed wetlands. Shallow managed wetlands in this region appear beneficial to willets and marbled godwits, but not necessarily to long-billed curlews. Only 8% of marked willets and godwits with nests in the area were seen or heard during surveys, compared with 29% of pre-laying individuals and 42% of birds with broods. This suggests that a low and variable percentage of these birds is counted during breeding bird surveys, likely limiting their ability to adequately monitor populations of these species.
Resumo:
Nesting structures for ground-nesting waterfowl may be an effective technique for increasing nesting success in regions in which nest success is below the 15% threshold needed to maintain a stable population. We studied the occupancy rate of artificial nesting structures called hen housesTM by Mallards (Anas platyrhynchos) nesting in two different wetland habitats, beaver ponds and sewage lagoons, in eastern Ontario during 1999–2001. We hypothesized that, because natural cover was sparse on sewage lagoons, Mallards would occupy hen houses at a higher rate on sewage lagoons than on beaver ponds. However, of the 248 hen houses distributed between beaver ponds and sewage lagoons, none was occupied by waterfowl. Common Grackles (Quiscalus quiscula) were the only avian species that nested in hen houses. However, Mallards successfully nested directly under several structures (n = 6) when water levels were low enough to expose the ground beneath them. Mayfield daily nest survival estimates for Mallards nesting in natural cover were similar on sewage lagoons and beaver ponds for all years (mean = 0.99) and were higher than most published estimates. Factors such as nesting cover, predation pressures, and structure design and material may influence the use of artificial hen houses and should be considered when planning a hen house program outside of the Prairie Pothole Region.
Resumo:
We examined nest site selection by Puerto Rican Parrots, a secondary cavity nester, at several spatial scales using the nest entrance as the central focal point relative to 20 habitat and spatial variables. The Puerto Rican Parrot is unique in that, since 2001, all known nesting in the wild has occurred in artificial cavities, which also provided us with an opportunity to evaluate nest site selection without confounding effects of the actual nest cavity characteristics. Because of the data limitations imposed by the small population size of this critically endangered endemic species, we employed a distribution-free statistical simulation approach to assess site selection relative to characteristics of used and unused nesting sites. Nest sites selected by Puerto Rican Parrots were characterized by greater horizontal and vertical visibility from the nest entrance, greater density of mature sierra palms, and a more westerly and leeward orientation of nest entrances than unused sites. Our results suggest that nest site selection in this species is an adaptive response to predation pressure, to which the parrots respond by selecting nest sites offering advantages in predator detection and avoidance at all stages of the nesting cycle. We conclude that identifying and replicating the “nest gestalt” of successful nesting sites may facilitate conservation efforts for this and other endangered avian species.
Resumo:
Deep Brain Stimulator devices are becoming widely used for therapeutic benefits in movement disorders such as Parkinson's disease. Prolonging the battery life span of such devices could dramatically reduce the risks and accumulative costs associated with surgical replacement. This paper demonstrates how an artificial neural network can be trained using pre-processing frequency analysis of deep brain electrode recordings to detect the onset of tremor in Parkinsonian patients. Implementing this solution into an 'intelligent' neurostimulator device will remove the need for continuous stimulation currently used, and open up the possibility of demand-driven stimulation. Such a methodology could potentially decrease the power consumption of a deep brain pulse generator.
Resumo:
Modern methods of spawning new technological motifs are not appropriate when it is desired to realize artificial life as an actual real world entity unto itself (Pattee 1995; Brooks 2006; Chalmers 1995). Many fundamental aspects of such a machine are absent in common methods, which generally lack methodologies of construction. In this paper we mix classical and modern studies in order to attempt to realize an artificial life form from first principles. A model of an algorithm is introduced, its methodology of construction is presented, and the fundamental source from which it sprang is discussed.
Resumo:
We have investigated the use of a laminin coated compressed collagen gel containing corneal fibroblasts (keratocytes) as a novel scaffold to support the growth of corneal limbal epithelial stem cells. The growth of limbal epithelial cells was compared between compressed collagen gel and a clinically proven conventional substrate, denuded amniotic membrane. Following compression of the collagen gel, encapsulated keratocytes remained viable and scanning electron microscopy showed that fibres within the compressed gel were dense, homogeneous and similar in structure to those within denuded amniotic membrane. Limbal epithelial cells were successfully expanded upon the compressed collagen resulting in stratified layers of cells containing desmosome and hemidesmosome structures. The resulting corneal constructs of both the groups shared a high degree of transparency, cell morphology and cell stratification. Similar protein expression profiles for cytokeratin 3 and cytokeratin 14 and no significant difference in cytokeratin 12 mRNA expression levels by real time PCR were also observed. This study provides the first line of evidence that a laminin coated compressed collagen gel containing keratocytes can adequately support limbal epithelial cell expansion, stratification and differentiation to a degree that is comparable to the leading conventional scaffold, denuded amniotic membrane.
Resumo:
Field populations of earthworms have shown a varied response in mortality to the fungicide carbendazim, the toxic reference substance used in agrochemical field trials. The aim of this study was to determine the influence of soil conditions as a potential cause of this variation. Laboratory acute toxicity tests were conducted using a range of artificial soils with varying soil components (organic matter, clay, pH and moisture). Batch adsorption/desorption studies were run to determine the influence of the soil properties on carbendazim behaviour. Adsorption was shown to be correlated with organic matter content and pH and this in turn could be linked to Eisenia fetida mortality, with lower mortality occurring with increased adsorption. Overall while E.fetida mortality did vary significantly between several of the soils the calculated LC50 values in the different soils did not cover a wide range (6.04-16.00 mg kg(-1)), showing that under these laboratory conditions soil components did not greatly influence carbendazim toxicity to E.fietida. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
This paper describes a new bio-indicator method for assessing wetland ecosystem health: as such, the study is particularly relevant to current legislation such as the EU Water Framework Directive, which provides a baseline of the current status Of Surface waters. Seven wetland sites were monitored across northern Britain, with model construction data for predicting, eco-hydroloplical relationships collected from five sites during 1999, Two new sites and one repeat site were monitored during 2000 to provide model test data. The main growing season for the vegetation, and hence the sampling period, was May-August during both years. Seasonal mean concentrations of nitrate (NO3-) in surface and soil water samples during 1999 ranged from 0.01 to 14.07 mg N 1(-1), with a mean value of 1.01 mg N 1(-1). During 2000, concentrations ranged from trace level (<0.01 m- N 1(-1)) to 9.43 mg N 1(-1), with a mean of 2.73 mg N 1(.)(-1) Surface and soil-water nitrate concentrations did not influence plant species composition significantly across representative tall herb fen and mire communities. Predictive relationships were found between nitrate concentrations and structural characteristics of the wetland vegetation, and a model was developed which predicted nitrate concentrations from measures of plant diversity, canopy structure and density of reproductive structures. Two further models, which predicted stem density and density of reproductive structures respectively, utilised nitrate concentration as one of the independent predictor variables. Where appropriate, the models were tested using data collected during 2000. This approach is complementary to species-based monitoring, representing a useful and simple too] to assess ecological status in target wetland systems and has potential for bio-indication purposes.
Resumo:
The aim of this study is to explore the environmental factors that determine plant Community distribution in northeast Algeria. This paper provides a quantitative analysis of the vegetation-environment relationships for a study site in the Cholt El Beida wetland, a RAMSAR site in Setif, Algeria. Sixty vegetation plots were sampled and analysed using TWINSPAN and Detrended Correspondence Analysis (DCA) in order to identify the principal vegetation communities and determine the environmental gradients associated with these. 127 species belonging to 41 families and 114 genera were recorded. Six of the recorded species were endemic representing 4.7% of the total species. The richest families were Compositae, Gramineae, Cruciferae and Chenopodiaceae. Therophytes and hemicryptophytes were the most frequent life forms. the Mediterranean floristic element is dominant and is represented by 39 species. The samples were classified into four main community types. The principal DCA axes represent gradients of soil salinity, moisture and anthropogenic pressure. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities and a greater understanding of controlling environmental factors. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in often critically endangered Mediterranean wetland areas. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Increasing areas of altered wetland are being restored by re-flooding the soil. Evidence in the literature indicates that this practice can induce the redox-mediated release of soil nutrients, thereby increasing the risk of diffuse water pollution. However, for the sake of improving wedand management decisions, there is a need for more detailed studies of the underlying relationship between the hydrological and redox dynamics that explain this risk; this is particularly the case in agricultural peatlands that are commonly targeted for the creation of lowland wet grassland. A 12-month field study was conducted to evaluate the relationship between hydrological fluctuations and soil redox potential (Eh) in a nutrient-rich peat field (32 g N kg(-1) and 1100 mg P kg(-1) in the surface 0-30 cm soil) that had been restored as lowland wet grassland from intensive arable production. Field tensiometers were installed at the 30-, 60- and 90-cm soil depths, and Pt electrodes at the 10-, 30-, 60- and 90-cm depths, for daily logging of soil water tension and Eh, respectively. The values for soil water tension displayed a strong negative relationship (P < 0.001) with monthly dip well observations of water table height. Calculations of soil water potential from the logged tension values were used, therefore, to provide a detailed profile of field water level and, together with precipitation data, explained some of the variation in Eh. For example, during the summer, alternating periods of aerobism (Eh > 330 mV) in the surface, 0-10 cm layer of peat coincided with intense precipitation events. Redox potential throughout the 30-100 cm profile also fluctuated seasonally; indeed, at all depths Eh displayed a strong, negative relationship (P < 0.001) with water table height over the 12-month study period. However, Eh throughout the 30-100 cm profile remained relatively low (< 230 mV), indicating permanently reduced conditions that are associated with denitrification and reductive dissolution of Fe-bound P. The implications of these processes in the N- and P-rich peat for wetland plant diversity and water quality are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The restoration of wetlands as bird habitats often involves the maintenance of a fluctuating water regime by careful, localised ditch water management using pumps and sluices. However, there is evidence in the literature to Suggest that alternate flood/drainage cycles can accelerate nutrient cycling and transport within the soil and, therefore, pose a threat to water quality through the process of eutrophication. This study focused on the dynamics and losses of soil P in a recently re-wetted, eutrophic fen peat developed on alluvium ill South west England. During the 2-year Study (2001 and 2002), soil water tensiometry revealed that the field water table (fluctuating annually between +20 and 60 cm relative to ground level) was extensively influenced across most of the 8.4 ha field site by the management of the adjacent ditch water levels. This conservation-led, prescribed water balance was facilitated by the high hydraulic conductivity (1.1 x 10(-s) ms(-1)) of the lower (70-140 cm), degraded layer of peat. However, only during a 7-day period of water table drawdown by intermittent pump drainage, approximately 45 g ha(-1) of dissolved reactive P (DRP) entered the pumped ditch from the field via this degraded layer. Summer rainfall events >35 mm d(-1) also coincided with significant peaks ill ditch water P concentration (up to 200 mu g L-1 DRP). Even larger peaks (Up to 700 mu g L-1 DRP) Occurred With the annual onset of autumn reflooding. These episodic P loss events pose a serious potential threat to biological water quality. (C) 2009 Elsevier B.V. All rights reserved.