789 resultados para Artificial neural network models
Resumo:
This work presents a method to detect Microcalcifications in Regions of Interest from digitized mammograms. The method is based mainly on the combination of Image Processing, Pattern Recognition and Artificial Intelligence. The Top-Hat transform is a technique based on mathematical morphology operations that, in this work is used to perform contrast enhancement of microcalcifications in the region of interest. In order to find more or less homogeneous regions in the image, we apply a novel image sub-segmentation technique based on Possibilistic Fuzzy c-Means clustering algorithm. From the original region of interest we extract two window-based features, Mean and Deviation Standard, which will be used in a classifier based on a Artificial Neural Network in order to identify microcalcifications. Our results show that the proposed method is a good alternative in the stage of microcalcifications detection, because this stage is an important part of the early Breast Cancer detection
Resumo:
In this paper a method based mainly on Data Fusion and Artificial Neural Networks to classify one of the most important pollutants such as Particulate Matter less than 10 micrometer in diameter (PM10) concentrations is proposed. The main objective is to classify in two pollution levels (Non-Contingency and Contingency) the pollutant concentration. Pollutant concentrations and meteorological variables have been considered in order to build a Representative Vector (RV) of pollution. RV is used to train an Artificial Neural Network in order to classify pollutant events determined by meteorological variables. In the experiments, real time series gathered from the Automatic Environmental Monitoring Network (AEMN) in Salamanca Guanajuato Mexico have been used. The method can help to establish a better air quality monitoring methodology that is essential for assessing the effectiveness of imposed pollution controls, strategies, and facilitate the pollutants reduction.
Resumo:
En los últimos años, estamos siendo testigos de la alta implantación en la sociedad de dispositivos de comunicación. Lo que hace años estaba reservado a un público reducido, con claras necesidades en comunicación, se ha trasladado al público general, dado la amplia variedad de servicios que sobre los nuevos medios de comunicación se han desarrollado. De hecho, el mayor tráfico de datos en la actualidad no se produce al hilo de necesidades de máxima importancia, sino como producto de nuevos hábitos cotidianos. En este contexto de renovación tecnológica constante en busca de la eficiencia, las antenas reflectoras reflectarray (o, simplemente, los reflectarrays, RAs, [1]) se presentan como una opción competitiva contra los reflectores parabólicos metálicos. En su versión más simple, una antena reflectarray se trata de una estructura compuesta de un elemento alimentador radiante, como puede ser una bocina, y de una superficie plana, consistente en multitud de elementos individuales dispuestos en una rejilla periódica. Sobre esta superficie plana, los frentes de onda provenientes del alimentador son reflejados formando frentes de ondas planas, de una manera análoga a como lo hace un reflector parabólico. A partir de la configuración inicial, y centrándose en el principio de funcionamiento, se ha ido modificando el tipo de elemento RA empleado, consiguiendo RA cada vez más operativos. Es, sobre todo, con el nacimiento de la tecnología impresa cuando las antenas RAs vuelven a cobrar interés. Aunque el uso de tecnología impresa supuso un gran impulso en los RAs, también abrió otros desafíos en lo que al diseño de ellos se refiere. Desde el punto de vista del análisis, es común suponer que el elemento RA se encuentra en un ambiente infinitamente periódico, de forma que se puedan aplicar las condiciones de contorno de Floquet (suposición de periodicidad local). Desde un punto de vista funcional, en general, los elementos RA de tecnología impresa presentan un ancho de banda reducido, que condiciona el ancho de banda del RA completo. Entre las soluciones aportadas, es comúnmente aceptado que las estructuras multicapa, con resonadores a distintas frecuencias cercanas, pueden mitigar en parte el problema del ancho de banda. Por ello, en la actualidad, los elementos RA más comunes están compuestos por varios elementos resonadores, cuyas dimensiones constituyen los parámetros de diseño libres. Es decir, en función de dichas dimensiones, el elemento RA tendrá un valor del coeficiente de reflexión u otro. Esto supone un aumento en la complejidad a la hora de analizar dicho elemento por los métodos numéricos conocidos, como el Método de los Momentos (MoM) o el Método de Elementos Finitos (FEM, por las siglas de su traducción inglesa Finite Element Method), que redundará en un mayor tiempo de cómputo en el análisis. Por otra parte, como se muestra en la Figura R.1, el diseño de un RA conlleva analizar multitud de veces el elemento RA considerado. En efecto, se trata de un método de diseño indirecto, en donde las dimensiones de los parámetros geométricos libres de cada elemento RA se obtienen de manera iterativa usando un optimizador. Se ve claro, entonces, que el aumento en tiempo de análisis del elemento RA repercute en gran medida en el tiempo de diseño total, por lo que una reducción en el tiempo de análisis del elemento RA podría ser muy beneficioso. Uno de los métodos para conseguir reducir el tiempo de diseño de un RA, que se puede encontrar en la literatura, es emplear un modelo de la respuesta del elemento RA en función de los parámetros libres. La cuestión que aflora es cuál es la herramienta idónea para modelar la respuesta del elemento RA. En los últimos años se han propuestos varias formas. La primera de ellas consistía en encontrar un equivalente circuital. Esta aproximación está bien extendida para otras estructuras EM, donde los equivalentes circuitales con componentes LC ofrecen respuestas muy precisas con respecto a las que ofrecen las estructuras EM en sí. A raíz del carácter no lineal de la respuesta, hay autores que han propuesto para el diseño de RAs la creación de tablas de datos (look up tables) que, para cada parámetro de diseño de interés (suele ser el desfase introducido por el elemento) guardan las dimensiones de los parámetros geométricos libres asociados. De esta forma, consiguen un diseño rápido, pero poco versátil, ya que la tabla ofrece un único valor para cada entrada, por lo que es difícil jugar con más de una restricción de diseño. Más recientemente, se está comenzando a utilizar, para la caracterización de estructuras EM, unos sistemas llamados Redes Neuronales Artificiales (ANN, por sus siglas en inglés Artificial Neural Network). El uso fundamental de los mismos en EM es el de servir como interpoladores no lineales. Se trata de sistemas que admiten múltiples parámetros de entradas y múltiples parámetros de salida. Antes de poder ser usados como interpoladores, deben ser entrenados. Para ello, necesitan de un conjunto de pares de los parámetros de entrada a la red, con los valores de las salidas asociados. Algunos usos en electromagnetismo de las ANNs que se pueden encontrar en la literatura son: el modelado de filtros; la caracterización de dispositivos activos; la obtención de modelos que aceleran los algoritmos que calculan la dirección de llegada en antenas de radar; o el diseño de arrays de antenas. Volviendo al modelado de elementos RA, en este trabajo haremos uso de las ANNs para caracterizar distintos tipos de elementos RA. A lo largo de estos últimos años, se ha considerado esta posibilidad como una de las más prometedoras. De hecho, podemos encontrar algunas pocas referencias al respecto, varias de las cuales han sido publicadas por distintos autores durante la elaboración del trabajo recogido en esta Tesis. Como veremos, los resultados que vamos a presentar aportan novedades con respecto a la citada literatura. Particularmente, en este trabajo se ha realizado la caracterización de un elemento RA de tres capas, considerando hasta 9 parámetros de entrada (seis parámetros geométricos, las dos coordenadas del ángulo de incidencia, y la frecuencia) y 4 parámetros de salida complejos (los coeficientes de reflexión para dos polarizaciones ortogonales lineales). Haciendo uso de esta caracterización en el flujo de diseño de RAs, se ha realizado el análisis y el diseño de varias antenas RA con restricciones de diseño de comunicaciones espaciales. Los resultados fueron exitosos comparados con los resultados obtenidos por los métodos tradicionales. De manera puntualizada, podríamos resumir las aportaciones que se verán en esta Tesis como: Caracterización de distintos elementos RA mediante ANNs basadas en el Perceptrón Multicapa (MLP). En concreto, se ha realizado con éxito la caracterización de un elemento RA de parche acoplado a línea de retardo a través de apertura; la caracterización de un elemento RA basado en dipolos sobre substratos de distintas características eléctricas en el rango de centenas de GHz; y la caracterización de un elemento RA basado en 3 parches apilados, con 9 parámetros libres en su caracterización. Uso del FEM, de la técnica de segmentación en subdominios y de la generación y manipulación de accesos MAM para el análisis y la caracterización de elementos RA mediante ANNs. Desarrollo de una nueva técnica de obtención de muestras, para el caso de estructura multicapa cuyo estudio EM se pueda dividir en dos pasos: estudio de cada capa y conexión de capas. De esta forma, se ha podido reducir en varios órdenes de magnitud el tiempo necesario para obtener el set de entrenamiento de las ANNs. Valoración del uso de distintos métodos de entrenamiento de segundo orden para el entrenamiento de redes ANN MLP, en la caracterización de elementos RA. Desarrollo de una nueva técnica para realizar el entrenamiento de redes ANNs basadas en el MLP, denominada como Entrenamiento en Cascada. Dado el alto número de parámetros a caracterizar, era difícil conseguir una red que, partiendo del número de entradas deseado, proporcionara convergencia con precisión suficiente. Con el algoritmo propuesto y probado en esta Tesis, se consiguió entrenar redes de 8 parámetros de entradas (el noveno parámetro, la frecuencia, correspondía a redes diferentes para cada valor) con gran precisión. Desarrollo de un método adaptativo para mejorar la precisión de las ANNs en el análisis de antenas RA. Este método, basado en re-entrenar las ANNs para sub rangos de los parámetros de entrada en donde el error es mayor, aporta una precisión mayor, al mejorar el entrenamiento global de las ANNs, en un tiempo aceptable, ya que solo se incluyen nuevas muestras en torno a los valores donde el error es mayor. Análisis de antena RA completa, con cobertura según especificaciones de la misión AMAZONAS (haz conformado, banda Ku), usando las caracterización el elemento RA obtenida mediante ANNs. La mejora en tiempo de análisis conseguida con respecto al uso del MoM está en un factor 102, con precisiones comparables. Diseño de antenas RA completas, con especificaciones de haz pincel y EuTELSAT (banda Ku). De nuevo, la mejora en tiempo de diseño conseguida están en torno a 102. De todos los puntos anteriores, son de destacar los dos últimos, que forman el objetivo principal de esta Tesis. Esto es, el uso de modelos rápidos de elementos RA mediante ANNs para el análisis y el diseño de antenas para comunicaciones por satélite.
Resumo:
Os motores de indução trifásicos são os principais elementos de conversão de energia elétrica em mecânica motriz aplicados em vários setores produtivos. Identificar um defeito no motor em operação pode fornecer, antes que ele falhe, maior segurança no processo de tomada de decisão sobre a manutenção da máquina, redução de custos e aumento de disponibilidade. Nesta tese são apresentas inicialmente uma revisão bibliográfica e a metodologia geral para a reprodução dos defeitos nos motores e a aplicação da técnica de discretização dos sinais de correntes e tensões no domínio do tempo. É também desenvolvido um estudo comparativo entre métodos de classificação de padrões para a identificação de defeitos nestas máquinas, tais como: Naive Bayes, k-Nearest Neighbor, Support Vector Machine (Sequential Minimal Optimization), Rede Neural Artificial (Perceptron Multicamadas), Repeated Incremental Pruning to Produce Error Reduction e C4.5 Decision Tree. Também aplicou-se o conceito de Sistemas Multiagentes (SMA) para suportar a utilização de múltiplos métodos concorrentes de forma distribuída para reconhecimento de padrões de defeitos em rolamentos defeituosos, quebras nas barras da gaiola de esquilo do rotor e curto-circuito entre as bobinas do enrolamento do estator de motores de indução trifásicos. Complementarmente, algumas estratégias para a definição da severidade dos defeitos supracitados em motores foram exploradas, fazendo inclusive uma averiguação da influência do desequilíbrio de tensão na alimentação da máquina para a determinação destas anomalias. Os dados experimentais foram adquiridos por meio de uma bancada experimental em laboratório com motores de potência de 1 e 2 cv acionados diretamente na rede elétrica, operando em várias condições de desequilíbrio das tensões e variações da carga mecânica aplicada ao eixo do motor.
Resumo:
Comunicación presentada en el IX Simposium Nacional de Reconocimiento de Formas y Análisis de Imágenes, Benicàssim, Mayo, 2001.
Resumo:
The research work presented in the thesis describes a new methodology for the automated near real-time detection of pipe bursts in Water Distribution Systems (WDSs). The methodology analyses the pressure/flow data gathered by means of SCADA systems in order to extract useful informations that go beyond the simple and usual monitoring type activities and/or regulatory reporting , enabling the water company to proactively manage the WDSs sections. The work has an interdisciplinary nature covering AI techniques and WDSs management processes such as data collection, manipulation and analysis for event detection. Indeed, the methodology makes use of (i) Artificial Neural Network (ANN) for the short-term forecasting of future pressure/flow signal values and (ii) Rule-based Model for bursts detection at sensor and district level. The results of applying the new methodology to a District Metered Area in Emilia- Romagna’s region, Italy have also been reported in the thesis. The results gathered illustrate how the methodology is capable to detect the aforementioned failure events in fast and reliable manner. The methodology guarantees the water companies to save water, energy, money and therefore enhance them to achieve higher levels of operational efficiency, a compliance with the current regulations and, last but not least, an improvement of customer service.
Resumo:
IMAGES core MD01-2416 (51°N, 168°E) provides the first centennial-scale multiproxy record of Holocene variation in North Pacific sea-surface temperature (SST), salinity, and biogenic productivity. Our results reveal a gradual decrease in subarctic SST by 3-5 °C from 11.1 to 4.2 ka and a stepwise long-term decrease in sea surface salinity (SSS) by 2-3 p.s.u. Early Holocene SSS were as high as in the modern subtropical Pacific. The steep halocline and stratification that is characteristic of the present-day subarctic North Pacific surface ocean is a fairly recent feature, developed as a product of mid-Holocene environmental change. High SSS matched a salient productivity maximum of biogenic opal during Bølling-to-Early Holocene times, reaching levels similar to those observed during preglacial times in the warm mid-Pliocene prior to 2.73 Ma. Similar productivity spikes marked every preceding glacial termination of the last 800 ka, indicating recurrent short-term events of mid-Pliocene-style intense upwelling of nutrient-rich Pacific Deepwater in the Pleistocene. Such events led to a repeated exposure of CO2-rich deepwater at the ocean surface facilitating a transient CO2 release to the atmosphere, but the timing and duration of these events repudiate a long-term influence of the subarctic North Pacific on global atmospheric CO2 concentration.
Resumo:
In the western Arabian Sea (WAS), the highest seasonal sea surface temperature (SST) difference presently occurs between May and August. In order to gain an understanding on how monsoonal upwelling modulates the SST difference between these two months, we have computed SST for the months of May and August based on census counts of planktonic foraminifers by using the artificial neural network (ANN) technique. The SST difference between May and August exhibits three distinct phases: i) a moderate SST difference in the late Holocene (0-3.5 ka) is attributable to intense upwelling during August, ii) a minimum SST difference from 4 to 12 ka is due to weak upwelling during the month of August, and iii) the highest SST difference during the last glacial interval (19 to 22 ka) with high Globigerina bulloides % could have been caused by the occurrence of a prolonged upwelling season (from May through July) and maximum difference in the incoming solar radiation between May and August. Overall, variations in the SST difference between May and August show that the timing of intense upwelling in the Western Arabian Sea over the last 22 kyr has been variable over the months of June, July and August.
Resumo:
There is much uncertainty surrounding the mechanisms that forced the abrupt climate fluctuations found in many palaeoclimate records during Marine Isotope Stage (MIS)-3. One of the processes thought to be involved in these events is the Atlantic Meridional Overturning Circulation (MOC), which exhibited large changes in its dominant mode throughout the last glacial period. Giant piston core MD95-2006 from the northeast Atlantic Ocean records a suite of palaeoceanographic proxies related to the activity of both surface and deep water masses through a period of MIS-3 when abrupt climate fluctuations were extremely pronounced. A two-stage progression of surface water warming during interstadial warm events is proposed, with initial warming related to the northward advection of a thin warm surface layer within the North Atlantic Current, which only extended into deeper surface layers as the interstadial progressed. Benthic foraminifera isotope data also show millennial-scale oscillations but of a different structure to the abrupt surface water changes. These changes are argued to partly be related to the influence of low-salinity deepwater brines. The influence of deepwater brines over the site of MD95-2006 reached a maximum at times of rapid warming of surface waters. This observation supports the suggestion that brine formation may have helped to destabilize the accumulation of warm, saline surface waters at low latitudes, helping to force the MOC into a warm mode of operation. The contribution of deepwater brines relative to other mechanisms proposed to alter the state of the MOC needs to be examined further in future studies.
Resumo:
We introduce a novel way of measuring the entropy of a set of values undergoing changes. Such a measure becomes useful when analyzing the temporal development of an algorithm designed to numerically update a collection of values such as artificial neural network weights undergoing adjustments during learning. We measure the entropy as a function of the phase-space of the values, i.e. their magnitude and velocity of change, using a method based on the abstract measure of entropy introduced by the philosopher Rudolf Carnap. By constructing a time-dynamic two-dimensional Voronoi diagram using Voronoi cell generators with coordinates of value- and value-velocity (change of magnitude), the entropy becomes a function of the cell areas. We term this measure teleonomic entropy since it can be used to describe changes in any end-directed (teleonomic) system. The usefulness of the method is illustrated when comparing the different approaches of two search algorithms, a learning artificial neural network and a population of discovering agents. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batchmode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995-1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n = 692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD < 1 day (Prop(MAD < 1)). The significance of the comparison is assessed through a regression analysis. Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD = 1.77 days and Prop(MAD < 1) = 54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p-value = 0.063) and a significant (p-value = 0.044) increase of Prop(MAD
Resumo:
Machine learning techniques for prediction and rule extraction from artificial neural network methods are used. The hypothesis that market sentiment and IPO specific attributes are equally responsible for first-day IPO returns in the US stock market is tested. Machine learning methods used are Bayesian classifications, support vector machines, decision tree techniques, rule learners and artificial neural networks. The outcomes of the research are predictions and rules associated With first-day returns of technology IPOs. The hypothesis that first-day returns of technology IPOs are equally determined by IPO specific and market sentiment is rejected. Instead lower yielding IPOs are determined by IPO specific and market sentiment attributes, while higher yielding IPOs are largely dependent on IPO specific attributes.
Resumo:
States or state sequences in neural network models are made to represent concepts from applications. This paper motivates, introduces and discusses a formalism for denoting such representations; a representation for representations. The formalism is illustrated by using it to discuss the representation of variable binding and inference abstractly, and then to present four specific representations. One of these is an apparently novel hybrid of phasic and tensor-product representations which retains the desirable properties of each.