973 resultados para Arsenic -- Toxicology
Resumo:
The concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) were determined in five commercially valuable squid species from different geographical origins (Atlantic, Indic and Pacific Oceans). Out of the 18 quantified PAHs (the 16 PAHs considered by US EPA as priority pollutants, dibenzo(a,l)pyrene and benzo(j)fluoranthene) only dibenz(a,h)anthracene was not detected. The total concentrations of PAHs varied by a factor of more than 100-fold, from 0.22 (Loligo gahi) to 60.9 lg/kg ww (Loligo reynaudii). Intraand inter-specific variability of PAH levels was statistically assessed. Nine carcinogenic (probable/possible) PAHs accounted for 1% (L. reynaudii) to 26% (Loligo opalescens) of the total PAHs content being the main contributors naphthalene (in Loligo duvaucelii, L. reynaudii and Loligo vulgaris species), chrysene (in L. opalescens) and indeno(1,2,3-cd)pyrene (in L. gahi). PAHs source analysis indicated that four of the five zones of capture of the different squid species are significantly affected by both petrogenic and pyrolytic sources. Assessment of the target carcinogenic risks, established by the US EPA, suggested that L. gahi (Atlantic Ocean) and L. opalescens (from Pacific Ocean) may pose additional risks for consumers, if not eaten in moderation, derived from benzo(a)pyrene ingestion.
Resumo:
Folk medicine is a relevant and effective part of indigenous healthcare systems which are, in practice, totally dependent on traditional healers. An outstanding coincidence between indigenous medicinal plant uses and scientifically proved pharmacological properties of several phytochemicals has been observed along the years. This work focused on the leaves of a medicinal plant traditionally used for therapeutic benefits (Angolan Cymbopogon citratus), in order to evaluate their nutritional value. The bioactive phytochemical composition and antioxidant activity of leaf extracts prepared with different solvents (water, methanol and ethanol) were also evaluated. The plant leaves contained ~60% of carbohydrates, protein (~20%), fat (~5%), ash (~4%) and moisture (~9%). The phytochemicals screening revealed the presence of tannins, flavonoids, and terpenoids in all extracts. Methanolic extracts also contained alkaloids and steroids. Several methods were used to evaluate total antioxidant capacity of the different extracts (DPPH; NO; and H2O2 scavenging assays, reducing power, and FRAP). Ethanolic extracts presented a significantly higher antioxidant activity (p < 0.05) except for FRAP, in which the best results were achieved by the aqueous extracts. Methanolic extracts showed the lowest radical scavenging activities for both DPPH; and NO; radicals.
Resumo:
Aquatic Toxicology 63 (2003) 307-318
Resumo:
According to numerous studies, airborne nanoparticles have a potential to produce serious adverse human health effects when deposited into the respiratory tract. The most important parts of the lung are the alveolar regions with their enormous surface areas and potential to transfer nanoparticles into the blood stream. These effects may be potentiated in case of the elderly, since this population is more susceptible to air pollutants in general and more to nanoparticles than larger particles. The main goal of this investigation was to determine the exposure of institutionalized elders to nanoparticles using Nanoparticle Surface Area Monitor (NSAM) equipment to calculate the deposited surface area (DSA) of nanoparticles into elderly lungs. In total, 193 institutionalized individuals over 65 yr of age were examined in four elderly care centers (ECC). The occupancy daily pattern was achieved by applying a questionnaire, and it was concluded that these subjects spent most of their time indoors, including the bedroom and living room, the indoor microenvironments with higher prevalence of elderly occupancy. The deposited surface area ranged from 10 to 46 mu m(2)/cm(3). The living rooms presented significantly higher levels compared with bedrooms. Comparing PM10 concentrations with nanoparticles deposited surface area in elderly lungs, it is conceivable that living rooms presented the highest concentration of PM10 and were similar to the highest average DSA. The temporal distribution of DSA was also assessed. While data showed a quantitative fluctuation in values in bedrooms, high peaks were detected in living rooms.
Resumo:
Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined.
Resumo:
This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.
Resumo:
The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.
Resumo:
The aim of this study is to contribute to the assessment of exposure levels of ultrafine particles (UFP) in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung-deposited alveolar surface area (resulting from exposure to UFP) in a major avenue leading to the town centre during late Spring, as well as in indoor buildings facing it. This study revealed differentiated patterns for week days and weekends, consistent with PM2.5 and PM10 patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels could be directly related with the fluxes of automobile traffic. During a typical week, UFP alveolar deposited surface area varied between 35.0 and 89.2 mu m(2)/cm(3), which is comparable with levels reported for other towns such in Germany and United States. The measured values allowed the determination of the number of UFP per cm(3), which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32-63%) outdoor, which is somewhat lower than levels observed in houses in Ontario.
Resumo:
The aim of this study was to contribute to the assessment of exposure levels of ultrafine particles in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung deposited alveolar surface area (resulting from exposure to ultrafine particles) in a major avenue leading to the town center during late spring, as well as in indoor buildings facing it. Data revealed differentiated patterns for week days and weekends, consistent with PM2.5 and PM10 patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels may be directly correlated with fluxes in automobile traffic. During a typical week, amounts of ultrafine particles per alveolar deposited surface area varied between 35 and 89.2 mu m2/cm3, which are comparable with levels reported for other towns in Germany and the United States. The measured values allowed for determination of the number of ultrafine particles per cubic centimeter, which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32 to 63%) outdoors, which is somewhat lower than levels observed in houses in Ontario.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
The existence of molecular mechanisms of response, repair and adaptation, many of which are greatly conserved across nature, gives to the cell with the plasticity it requires to adjust to its ever-changing environment, a homeostatic event that is termed the stress response. In the budding yeast Saccharomyces cerevisiae there is a particular family of transcription factors, the Yap family, which has been shown to have a relevant role in yeast adaptation to several stress conditions. In particular, Yap1 is the major regulator of the transcriptional response to oxidative stress and Yap2 and Yap8 play important roles upon cadmium and arsenic exposure, respectively.(...)
Resumo:
This paper aims to survey metal concentrations in soils in the vicinity of a coal-firedpower plant located in southwest of Portugal. Two annual sampling campaigns were carried out to measure a hypothetical soil contamination around the coal plant. The sampling area was divided into two subareas, both centered in the emission source, delimited by two concentric circles with radius of 6 km and 20 km. About 40 samplings points were defined in the influence area. Metals measurements were performed with a portable analytical X-ray dispersive energy fluorescence spectrometer identifying about 20 different elements in each sampling point. The most relevant elements measured included As, Cu, Fe, Hg, Pb, Ti and Zn in both sampling areas. Considering the results obtained in the first sampling campaign, arsenic is predominantly higher within the 6-20 km sampling area. The second sampling campaign showed that both sampling areas presented relatively similar metal concentrations except for Fe, Mn, Sr and Zn which concentration is higher within the 6-20 km sampling area. Also, As, Fe, Mn and Ti concentrations decreased significantly from the first to the second sampling campaign and their concentration were predominately higher in the NE-E and E-SE directions.
Resumo:
The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response.With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.
Resumo:
The most consumed squid species worldwide were characterized regarding their concentrations of minerals, fatty acids, cholesterol and vitamin E. Interspecific comparisons were assessed among species and geographical origin. The health benefits derived from squid consumption were assessed based on daily minerals intake and on nutritional lipid quality indexes. Squids contribute significantly to daily intake of several macro (Na, K, Mg and P) and micronutrients (Cu, Zn and Ni). Despite their low fat concentration, they are rich in long-chain omega-3 fatty acids, particularly docosahexaenoic (DHA) and eicosapentanoic (EPA) acids, with highly favorable ω-3/ω-6 ratios (from 5.7 to 17.7), reducing the significance of their high cholesterol concentration (140–549 mg/100 g ww). Assessment of potential health risks based on minerals intake, non-carcinogenic and carcinogenic risks indicated that Loligo gahi (from Atlantic Ocean), Loligo opalescens (from Pacific Ocean) and Loligo duvaucelii (from Indic Ocean) should be eaten with moderation due to the high concentrations of Cu and/or Cd. Canonical discriminant analysis identified the major fatty acids (C14:0, C18:0, C18:1, C18:3ω-3, C20:4ω-6 and C22:5ω-6), P, K, Cu and vitamin E as chemical discriminators for the selected species. These elements and compounds exhibited the potential to prove authenticity of the commercially relevant squid species.
Resumo:
Due to their detrimental effects on human health, the scientific interest in ultrafine particles (UFP) has been increasing, but available information is far from comprehensive. Compared to the remaining population, the elderly are potentially highly susceptible to the effects of outdoor air pollution. Thus, this study aimed to (1) determine the levels of outdoor pollutants in an urban area with emphasis on UFP concentrations and (2) estimate the respective dose rates of exposure for elderly populations. UFP were continuously measured over 3 weeks at 3 sites in north Portugal: 2 urban (U1 and U2) and 1 rural used as reference (R1). Meteorological parameters and outdoor pollutants including particulate matter (PM10), ozone (O3), nitric oxide (NO), and nitrogen dioxide (NO2) were also measured. The dose rates of inhalation exposure to UFP were estimated for three different elderly age categories: 64–70, 71–80, and >81 years. Over the sampling period levels of PM10, O3 and NO2 were in compliance with European legislation. Mean UFP were 1.7 × 104 and 1.2 × 104 particles/cm3 at U1 and U2, respectively, whereas at rural site levels were 20–70% lower (mean of 1 ×104 particles/cm3). Vehicular traffic and local emissions were the predominant identified sources of UFP at urban sites. In addition, results of correlation analysis showed that UFP were meteorologically dependent. Exposure dose rates were 1.2- to 1.4-fold higher at urban than reference sites with the highest levels noted for adults at 71–80 yr, attributed mainly to higher inhalation rates.