993 resultados para Arranjo Produtivo Local
Resumo:
The otter belongs to the family Muslelidae of the super family Canoidea. It is a mammal related to the stoat, skunk, marten and wolverine. Its habitat is the water, and it is carnivorous in diet, feeding on fish and other water animals. In Uganda, the otter is widely distributed throughout the western region, and most other parts of the country. To protect fish farmers from the otter, the Fisheries Department recommends fencing the ponds to keep out the otters or trapping to kill them.
Resumo:
Kolmogorov's two-thirds, ((Δv) 2) ∼ e 2/ 3r 2/ 3, and five-thirds, E ∼ e 2/ 3k -5/ 3, laws are formally equivalent in the limit of vanishing viscosity, v → 0. However, for most Reynolds numbers encountered in laboratory scale experiments, or numerical simulations, it is invariably easier to observe the five-thirds law. By creating artificial fields of isotropic turbulence composed of a random sea of Gaussian eddies whose size and energy distribution can be controlled, we show why this is the case. The energy of eddies of scale, s, is shown to vary as s 2/ 3, in accordance with Kolmogorov's 1941 law, and we vary the range of scales, γ = s max/s min, in any one realisation from γ = 25 to γ = 800. This is equivalent to varying the Reynolds number in an experiment from R λ = 60 to R λ = 600. While there is some evidence of a five-thirds law for g > 50 (R λ > 100), the two-thirds law only starts to become apparent when g approaches 200 (R λ ∼ 240). The reason for this discrepancy is that the second-order structure function is a poor filter, mixing information about energy and enstrophy, and from scales larger and smaller than r. In particular, in the inertial range, ((Δv) 2) takes the form of a mixed power-law, a 1+a 2r 2+a 3r 2/ 3, where a 2r 2 tracks the variation in enstrophy and a 3r 2/ 3 the variation in energy. These findings are shown to be consistent with experimental data where the polution of the r 2/ 3 law by the enstrophy contribution, a 2r 2, is clearly evident. We show that higherorder structure functions (of even order) suffer from a similar deficiency.
Resumo:
Molecular epidemiological investigation was conducted among injecting drug users (IDUs) (n = 11) and heterosexuals (n = 15) in Kunming, Yunnan Province of China. HIV-1 genotypes were determined based on the nucleotide sequences of 2.6-kb gag-RT region. The distribution of genotypes among IDUs was as follows: CRF07_BC (5/11) and CRF08_BC (5/11); subtype B' (1/11). Similarly, a majority of Kunming heterosexuals (14/15) were infected with CRF07_BC (4/15), CRF08_BC (6/15), or subtype B' (4/15), known to predominate among IDUs in China. This contrasts with trends in the coastal regions of China and surrounding southeastern Asian countries, where CRF01_AE predominates among heterosexuals. The heterosexual HIV-1 epidemic in Kunming thus appears to derive from the local IDU epidemic. Of note, subtype B' was the most prevalent strain among heterosexuals before 1997, while CRF07_BC and CRF08_BC became predominant in 2002, indicating a transition of HIV-1 genotype distribution between the early and the more recent samples from Kunming heterosexuals.
Resumo:
We present a new haplotype-based approach for inferring local genetic ancestry of individuals in an admixed population. Most existing approaches for local ancestry estimation ignore the latent genetic relatedness between ancestral populations and treat them as independent. In this article, we exploit such information by building an inheritance model that describes both the ancestral populations and the admixed population jointly in a unified framework. Based on an assumption that the common hypothetical founder haplotypes give rise to both the ancestral and the admixed population haplotypes, we employ an infinite hidden Markov model to characterize each ancestral population and further extend it to generate the admixed population. Through an effective utilization of the population structural information under a principled nonparametric Bayesian framework, the resulting model is significantly less sensitive to the choice and the amount of training data for ancestral populations than state-of-the-art algorithms. We also improve the robustness under deviation from common modeling assumptions by incorporating population-specific scale parameters that allow variable recombination rates in different populations. Our method is applicable to an admixed population from an arbitrary number of ancestral populations and also performs competitively in terms of spurious ancestry proportions under a general multiway admixture assumption. We validate the proposed method by simulation under various admixing scenarios and present empirical analysis results from a worldwide-distributed dataset from the Human Genome Diversity Project.
Resumo:
A bottom-up technique for synthesizing transversely suspended zinc oxide nanowires (ZnO NWs) under a zinc nitrate (Zn(NO 3) 2· 6H 2O) and hexamethylenetetramine (HMTA, (CH 2) 6·N 4) solution within a microfabricated device is reported in this paper. The device consists of a microheater which is used to initially create an oxidized ZnO seed layer. ZnO NWs are then locally synthesized by the microheater and electrodes embedded within the devices are used to drive electric field directed horizontal alignment of the nanowires within the device. The entire process is carried out at low temperature. This approach has the potential to considerably simplify the fabrication and assembly of ZnO nanowires on CMOS compatible substrates, allowing for the chemical synthesis to be carried out under near-ambient conditions by locally defining the conditions for nanowire growth on a silicon reactor chip. © 2012 IEEE.
Resumo:
We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally,we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system. £.
Resumo:
We have developed a realistic simulation of 2D dry foams under quasistatic shear. After a short transient, a shear-banding instability is observed. These results are compared with measurements obtained on real 2D (confined) foams. The numerical model allows us to exhibit the mechanical response of the material to a single plastication event. From the analysis of this elastic propagator, we propose a scenario for the onset and stability of the flow localization process in foams, which should remain valid for most athermal amorphous systems under creep flow.
Resumo:
Abstract-Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art Banged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air Bow to be reduced and provide a means of identifying and assessing the various parameters that control the air Bow. The mathematical model is formulated in terms of the Stokes steam function, ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained Bow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions. | Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art flanged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air flow to be reduced and provide a means of identifying and assessing the various parameters that control the air flow. The mathematical model is formulated in terms of the Stokes steam function, Ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained flow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions.
Resumo:
Results of X-ray absorption fine structure measurements in manganites (La1-xHox)2/3Ca1/3MnO3 with 0.15 < x < 0.50 are presented. When LaMnO3 is doped with a, divalent element such as Ca2+, substituting for La3+, holes are induced in the filled Mn d orbitais. This leads to a, strong ferromagnetic coupling between Mn sites. Ca ions in La1-xCa xMnO3 introduce a distortion of the crystal lattice and mixed valence Mn ions (Mn3+ and Mn4+). On the other hand, in manganites (La1-xHox)2/3Ca 1/3MnO3 the substitution of La for Ho causes a lattice distortion and induces a disorder, which reduces a magnetic interaction. The ferromagnetic transition temperature and conductivity decrease very quickly with increasing x. The magnetic and transport properties of compounds depend on the local atomic structure around Mn ions. The information on the bond lengths and Debye-Waller factor are obtained from the extended X-ray absorption fine structure (EXAFS) data analysis. The charge state of Mn is determined from the position of the absorption edge in X-ray absorption near edge structure (XANES) data. XAFS results are in good agreement with magnetic characteristics of the studied materials.
Resumo:
The aim of this report is to compare the trapped field distribution under a local heating created at the sample edge for different sample morphologies. Hall probe mappings of the magnetic induction trapped in YBCO bulk samples maintained out of thermal equilibrium were performed on YBCO bulk single domains, YBCO single domains with regularly spaced hole arrays, and YBCO superconducting foams. The capability of heat draining was quantified by two criteria: the average induction decay and the size of the thermally affected zone caused by a local heating of the sample. Among the three investigated sample shapes, the drilled single domain displays a trapped induction which is weakly affected by the local heating while displaying a high trapped field. Finally, a simple numerical modelling of the heat flux spreading into a drilled sample is used to suggest some design rules about the hole configuration and their size. © 2005 IOP Publishing Ltd.
Resumo:
The effect of displaying cytochromes from an amyloid fibre is modelled as perturbation of -strands in a bilayer of helical -sheets, thereby explaining the spiral morphology of decorated amyloid and the dynamic response of morphology to cytochrome conformation. The morphology of the modelled fibre, which consists of minimal energy assemblies of rigid building blocks containing two anisotropic interacting units, depends primarily on the rigid constraints between units rather than the soft interactions between them. The framework is a discrete version of the bilayered frustration principle that drives morphology in Bauhinia seedpods. We show that self-assembly of frustrated long range structures can occur if the building blocks themselves are internally frustrated, e.g. amyloid morphology is governed by the conformation of the misfolded protein nucleating the fibre. Our model supports the idea that any peptide sequence can form amyloid if bilayers can form first, albeit stabilised by additional material such as chaperones or cytochromes. Analysis of experimentally derived amyloid structures supports our conclusions and suggests a range of frustration effects, which natural amyloid fibres may exploit. From this viewpoint, amyloid appears as a molecular example of a more general universal bilayered frustration principle, which may have profound implications for materials design using fibrous systems. Our model provides quantitative guidance for such applications. The relevance to longer length scales was proved by designing the morphology of a series of macroscopic magnetic stacks. Finally, this work leads to the idea of mixing controlled morphologically defined species to generate higher-order assembly and complex functional behaviour. The systematic kinking of decorated fibres and the nested frustration of the Bauhinia seed pod are two outstanding examples.
Resumo:
Bistable dynamical switches are frequently encountered in mathematical modeling of biological systems because binary decisions are at the core of many cellular processes. Bistable switches present two stable steady-states, each of them corresponding to a distinct decision. In response to a transient signal, the system can flip back and forth between these two stable steady-states, switching between both decisions. Understanding which parameters and states affect this switch between stable states may shed light on the mechanisms underlying the decision-making process. Yet, answering such a question involves analyzing the global dynamical (i.e., transient) behavior of a nonlinear, possibly high dimensional model. In this paper, we show how a local analysis at a particular equilibrium point of bistable systems is highly relevant to understand the global properties of the switching system. The local analysis is performed at the saddle point, an often disregarded equilibrium point of bistable models but which is shown to be a key ruler of the decision-making process. Results are illustrated on three previously published models of biological switches: two models of apoptosis, the programmed cell death and one model of long-term potentiation, a phenomenon underlying synaptic plasticity. © 2012 Trotta et al.