925 resultados para Anatomical plasticity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Visceral fat accumulation is associated with several changes, such as, increased production of inflammatory biomarkers, especially, C-reactive protein (CRP) and fibrinogen. Anthropometric measurements for central adiposity evaluation, such as, waist circumference (WC) and sagittal abdominal diameter (SAD) have been highlighted. However, there is no consensus on the best anatomical site for measurement. Objective: To evaluate the reliability of different measurements of WC and SAD and verify their capacity to discriminate changes in inflammatory biomarkers. Method: 130 men (20-59 years) were assessed, having measurements of weight, height, WC and SAD. It was considered as the cutoff point for high-sensitivity CRP (hs-CRP) values ≥ 0.12 mg/dL and for fibrinogen the 50th percentile of the evaluated sample. Results: All measurements presented an intraclass correlation coefficient between 0.998 and 0.999. WC measured at the umbilical level (AUC=0.693±0.049) and the smallest circumference between the thorax and the hips (AUC=0.607±0.050) had greater ability to discriminate changes in concentrations of hs-CRP and fibrinogen, respectively. SAD (umbilical level) showed the better ability to detect changes in concentrations of hs-CRP (AUC=0.698± 0.049) and fibrinogen (AUC=0.625±0.049), according to the ROC analysis (p<0.05). Conclusion: WC (smallest circumference between the thorax and the hips) and SAD (umbilical level) are the anatomic sites of measurement for use in predicting the inflammatory risk in apparently health men.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Everyday, humans and animals navigate complex acoustic environments, where multiple sound sources overlap. Somehow, they effortlessly perform an acoustic scene analysis and extract relevant signals from background noise. Constant updating of the behavioral relevance of ambient sounds requires the representation and integration of incoming acoustical information with internal representations such as behavioral goals, expectations and memories of previous sound-meaning associations. Rapid plasticity of auditory representations may contribute to our ability to attend and focus on relevant sounds. In order to better understand how auditory representations are transformed in the brain to incorporate behavioral contextual information, we explored task-dependent plasticity in neural responses recorded at four levels of the auditory cortical processing hierarchy of ferrets: the primary auditory cortex (A1), two higher-order auditory areas (dorsal PEG and ventral-anterior PEG) and dorso-lateral frontal cortex. In one study we explored the laminar profile of rapid-task related plasticity in A1 and found that plasticity occurred at all depths, but was greatest in supragranular layers. This result suggests that rapid task-related plasticity in A1 derives primarily from intracortical modulation of neural selectivity. In two other studies we explored task-dependent plasticity in two higher-order areas of the ferret auditory cortex that may correspond to belt (secondary) and parabelt (tertiary) auditory areas. We found that representations of behaviorally-relevant sounds are progressively enhanced during performance of auditory tasks. These selective enhancement effects became progressively larger as you ascend the auditory cortical hierarchy. We also observed neuronal responses to non-auditory, task-related information (reward timing, expectations) in the parabelt area that were very similar to responses previously described in frontal cortex. These results suggests that auditory representations in the brain are transformed from the more veridical spectrotemporal information encoded in earlier auditory stages to a more abstract representation encoding sound behavioral meaning in higher-order auditory areas and dorso-lateral frontal cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Part 1 of this thesis, we propose that biochemical cooperativity is a fundamentally non-ideal process. We show quantal effects underlying biochemical cooperativity and highlight apparent ergodic breaking at small volumes. The apparent ergodic breaking manifests itself in a divergence of deterministic and stochastic models. We further predict that this divergence of deterministic and stochastic results is a failure of the deterministic methods rather than an issue of stochastic simulations.

Ergodic breaking at small volumes may allow these molecular complexes to function as switches to a greater degree than has previously been shown. We propose that this ergodic breaking is a phenomenon that the synapse might exploit to differentiate Ca$^{2+}$ signaling that would lead to either the strengthening or weakening of a synapse. Techniques such as lattice-based statistics and rule-based modeling are tools that allow us to directly confront this non-ideality. A natural next step to understanding the chemical physics that underlies these processes is to consider \textit{in silico} specifically atomistic simulation methods that might augment our modeling efforts.

In the second part of this thesis, we use evolutionary algorithms to optimize \textit{in silico} methods that might be used to describe biochemical processes at the subcellular and molecular levels. While we have applied evolutionary algorithms to several methods, this thesis will focus on the optimization of charge equilibration methods. Accurate charges are essential to understanding the electrostatic interactions that are involved in ligand binding, as frequently discussed in the first part of this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise and physical activity are lifestyle behaviors associated with enriched mental health. Understanding the mechanisms by which exercise and physical activity improve mental health may provide insight for novel therapeutic approaches for numerous mental health disorders. This dissertation reports the findings from three studies investigating the influence of acute and chronic exercise on behavioral and mechanistic markers of hippocampal plasticity and delves into the potential role of noradrenergic signaling in the hippocampal adaptations with exercise. The first study assessed the effects of long-term voluntary wheel running on hippocampal expression of plasticity-associated genes and proteins in adult male and female C57BL/6J mice, highlighting sex differences in the adaptations to long-term voluntary wheel running. The second study examined the influence of acute exercise intensity on AMPA receptor phosphorylation, a mechanism essential for hippocampal plasticity, plasticity- associated gene expression, spatial learning and memory, and anxiety-like behavior. The unexpected finding that acute exercise increased anxiety-like behavior encouraged investigation into the role of central noradrenergic signaling in acute exercise-induced anxiety. The third study determined how previous exposure to voluntary wheel running modulates the response to an acute bout of exercise, focusing primarily on transcription of the important plasticity-promoting gene, brain-derived neurotrophic factor. Using a pharmacological approach to compromise the locus coeruleus noradrenergic system, a system that is implicated in age-related mental health disorders such as Alzheimer’s Disease, the third study also investigated the influence and interaction of the noradrenergic system and acute exercise on expression of multiple brain-derived neurotrophic factor transcripts. Together, this dissertation reports the findings from a series of experiments that explored similarities, differences, and interactions between the effects of acute and chronic exercise on markers of hippocampal plasticity and behavior. Further, this work provides insight into the role of the noradrenergic system in exercise-induced hippocampal plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent work has shown that the cardiac outflow tract of sharks and chimaeras does not consist of a single myocardial component, the conus arteriosus, as classically accepted, but two, namely, the myocardial conus arteriosus and the non-myocardial bulbus arteriosus. However, the anatomical composition of the outflow tract of the batoid hearts remains unknown. The present study was designed to fill this gap. The material examined consisted of hearts of two species of rays, namely, the Mediterranean starry ray (Raja asterias) and sandy ray (Leucoraja circularis). They were studied using scanning electron microscopy, and histochemical and inmunohistochemical techniques. In both species, the outflow tract consists of two components, proximal and distal with regard to the ventricle. The proximal component is the conus arteriosus; it is characterized by the presence of compact myocardium in its wall and several transverse rows of pocket-shaped valves at its luminal side. Each valve consists of a leaflet and its supporting sinus. Histologically, the leaflet has two fibrosas, inner and outer, and a middle coat, the spongiosa. The distal component lacks myocardium. Its wall consists of smooth muscle cells, elastic fibers and collagen. Thus, it shows an arterial-like structure. However, it differs from the aorta because it is covered by the epicardium and crossed by coronary arteries. These findings indicate that the distal component is morphologically equivalent to the bulbus arteriosus of sharks and chimaeras. In contrast to foregoing descriptions, the valves of the first transverse row are distally anchored to the bulbus arteriosus and not to the ventral aorta. Our findings give added support to the notion that presence of a bulbus arteriosus at the arterial pole of the heart is common to all chondrichtyans, and not an apomorphy of actinopterygians as classically thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eggs of the dengue fever vector Aedes aegypti possess the ability to undergo an extended quiescence period hosting a fully developed first instar larvae within its chorion. As a result of this life history stage, pharate larvae can withstand months of dormancy inside the egg where they depend on stored reserves of maternal origin. This adaptation known as pharate first instar quiescence, allows A. aegypti to cope with fluctuations in water availability. An examination of this fundamental adaptation has shown that there are trade-offs associated with it. Aedes aegypti mosquitoes are frequently associated with urban habitats that may contain metal pollution. My research has demonstrated that the duration of this quiescence and the extent of nutritional depletion associated with it affects the physiology and survival of larvae that hatch in a suboptimal habitat; nutrient reserves decrease during pharate first instar quiescence and alter subsequent larval and adult fitness. The duration of quiescence compromises metal tolerance physiology and is coupled to a decrease in metallothionein mRNA levels. My findings also indicate that even low levels of environmentally relevant larval metal stress alter the parameters that determine vector capacity. My research has also demonstrated that extended pharate first instar quiescence can elicit a plastic response resulting in an adult phenotype distinct from adults reared from short quiescence eggs. Extended pharate first instar quiescence affects the performance and reproductive fitness of the adult female mosquito as well as the nutritional status of its progeny via maternal effects in an adaptive manner, i.e., anticipatory phenotypic plasticity results as a consequence of the duration of pharate first instar quiescence and alternative phenotypes may exist for this mosquito with quiescence serving as a cue possibly signaling the environmental conditions that follow a dry period. M findings may explain, in part, A. aegypti’s success as a vector and its geographic distribution and have implications for its vector capacity and control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The establishment of radiofrequency catheter ablation techniques as the mainstay in the treatment of tachycardia has renewed new interest in cardiac anatomy. The interventional arrhythmologist has drawn attention not only to the gross anatomic details of the heart but also to architectural and histological characteristics of various cardiac regions that are relevant to the development or recurrence of tachyarrhythmias and procedural related complications of catheter ablation. In this review, therefore, we discuss some anatomic landmarks commonly used in catheter ablations including the terminal crest, sinus node region, Koch’s triangle, cavotricuspid isthmus, Eustachian ridge and valve, pulmonary venous orifices, venoatrial junctions, and ventricular outflow tracts. We also discuss the anatomical features of important structures in the vicinity of the atria and pulmonary veins, such as the esophagus and phrenic nerves. This paper provides basic anatomic information to improve understanding of the mapping and ablative procedures for cardiac interventional electrophysiologists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenotypic differences within a species significantly contribute to the variation we see among plants and animals. Plasticity as a concept helps us to understand some of this variation. Phenotypic plasticity plays a significant role in multiple ecological and evolutionary processes. Because plasticity can be driven by the environment it is more likely to produce beneficial alternative phenotypes than rare and often deleterious genetic mutations. Furthermore, differences in phenotypes that arise in response to the environment can affect multiple individuals from the same population (or entire populations) simultaneously and are therefore of greater evolutionary significance. This allows similar, beneficial alternative phenotypes to increase quickly within a single generation and allow new environments to produce and select for new phenotypes instantly. The direction of the present thesis is to increase our understanding of how phenotypic plasticity, coupled with contrasting environmental conditions, can produce alternative phenotypes within a population. Plasticity provides a source of variation for natural selection to act upon, and may lead to genetic isolation as a by-product. For example, there are multiple cases of polymorphic populations of fish, where groups belonging to multiple isolated gene pools, have arisen in sympatry. Here it is shown that although plasticity is important in sympatric speciation events, plasticity alone is not responsible for the frequency in which sympatric polymorphic populations occur. The most frequently observed differences among sympatric polymorphic populations are morphological differences associated with parts of the anatomy used in the detection, handling and capture of prey. Moreover, it is shown here that there are physiological effects associated with foraging on alternative prey that may significantly contribute towards ecological speciation. It is also shown in this study that anthropogenic abiotic factors can disrupt developmental processes during early ontogeny, significantly influencing morphology, and therefore having ecological consequences. Phenotypic structuring in postglacial fish is most frequently based around a divergence towards either pelagic or littoral benthic foraging specialisms. Divergences that deviate from this pattern are of greater scientific interest as they increase our understanding of how evolutionary processes and selection pressures work. Here we describe a rare divergence not based around the typical pelagic/littoral benthic foraging specialisms. Finally, in this study, the effectiveness of local level conservation policy shows that species of fish which are highly variable in their life history strategies are harder to effectively manage and often poorly represented at a local level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spinal Cord Injury (SCI) is a devastating condition for human and animal health. In SCI particularly, neurons, oligodendrocytes precursor cells, and mature oligodendrocytes are highly vulnerable to the toxic microenvironment after the lesion and susceptible to the elevated levels of noxious stimuli. Thus the regenerative response of the organism in case of SCI is significantly reduced, and only little spontaneous amelioration is observed in lesioned patients during the early phases. This work mainly focuses on studying and characterizing the modification induced by the SCI in a preclinical animal model. We investigated the ECM composition in the spinal cord segments surrounding the primary lesion site at a gene expression level. We found Timp1 and CD44 as a crucial hub in the secondary cascade of SCI in both spinal cord segments surrounding the lesion site. Interestingly, a temporal and anatomical difference in gene expression, indicating a complex regulation of ECM genes after SCI that could be used as a tool for regenerative medicine. We also investigated the modification in synaptic plasticity-related gene expression in spinal and supraspinal areas involved in motor control. We confirmed the anatomical and temporal difference in gene expression in spinal cord tissue. This analysis suggests that a molecular mapping of the lesion-induced modification could be a useful tool for regenerative medicine. In the last part, we evaluated the efficacy of an implantable biopolymer loaded with an anti-inflammatory drug and a pro-myelinating agent on the acute phase of SCI in our preclinical model. We found a consistent reduction of the inflammatory state in the spinal lesion site and the cord's surrounding segments. Moreover, we found increased preservation of the spinal cord tissue with a related upregulation of neuronal and oligodendroglial markers after lesion. Our treatment showed effective ameliorating functional outcome and reducing the lesion extension in the chronic phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine mussels are exceptionally well-adapted to live in transitional habitats where they are exposed to fluctuating environmental parameters and elevated levels of natural and anthropogenic stressors throughout their lifecycle. However, there is a dearth of information about the molecular mechanisms that assist in dealing with environmental changes. This project aims to investigate the molecular mechanisms governing acclimatory and stress responses of the Mediterranean mussel (Mytilus galloprovincialis) by addressing relevant life stages and environmental stressors of emerging concern. The experimental approach consisted of two phases to explore (i) the physiological processes at early life history and the consequences of plastic pollution and (ii) the adult physiology processes under natural habitats. As the first phase, I employed a plastic leachate (styrene monomer), and polystyrene microplastics to understand the modulation of cytoprotective mechanisms during the early embryo stages. Results revealed the onset of transcriptional impairments of genes involved in MXR-related transporters and other physiological processes induced by styrene and PS-MPs. In the second phase, as a preliminary analysis, microbiota profile of adult mussels at the tissue scale and its surrounding water was explored to understand microbiota structures that may reflect peculiar adaptations to the respective tissue functions. The broader experiment has been implemented to understand the variability of transcriptional profiles in the mussel digestive glands in the natural setting. All the genes employed in this study have shown possibilities to use as molecular biomarker responses throughout the year for monitoring the physiology of mussels living in a particular environment and, in turn, more properly detecting changes in the environment. As a whole, my studies provide insights into the interactions between environmental parameters, and intrinsic characters, and physiology of marine bivalves, and it could help to interpretation of responses correctly under stress conditions and climate change scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extended visual network, which includes occipital, temporal and parietal posterior cortices, is a system characterized by an intrinsic connectivity consisting of bidirectional projections. This network is composed of feedforward and feedback projections, some hierarchically arranged and others bypassing intermediate areas, allowing direct communication across early and late stages of processing. Notably, the early visual cortex (EVC) receives considerably more feedback and lateral inputs than feedforward thalamic afferents, placing it at the receiving end of a complex cortical processing cascade, rather than just being the entrance stage of cortical processing of retinal input. The critical role of back-projections to visual cortices has been related to perceptual awareness, amplification of neural activity in lower order areas and improvement of stimulus processing. Recently, significant results have shown behavioural evidence suggesting the importance of reentrant projections in the human visual system, and demonstrated the feasibility of inducing their reversible modulation through a transcranial magnetic stimulation (TMS) paradigm named cortico-cortical paired associative stimulation (ccPAS). Here, a novel research line for the study of recurrent connectivity and its plasticity in the perceptual domain was put forward. In the present thesis, we used ccPAS with the aim of empowering the synaptic efficacy, and thus the connectivity, between the nodes of the visuocognitive system to evaluate the impact on behaviour. We focused on driving plasticity in specific networks entailing the elaboration of relevant social features of human faces (Chapters I & II), alongside the investigation of targeted pathways of sensory decisions (Chapter III). This allowed us to characterize perceptual outcomes which endorse the prominent role of the EVC in visual awareness, fulfilled by the activity of back-projections originating from distributed functional nodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there has been an exponential increase in the so-called “new pets”, including the domestic guinea pig (Cavia porcellus) and the capybara (Hydrochoerus hydrochaeris), two closely related Caviid rodents native to South America. Both historically bred for food purposes, they have more recently become increasingly popular as pets in the European and American continents, respectively. This led to an increasing veterinary interest in deepening the knowledge regarding their normal anatomy, as a basic contribution to other fields of veterinary medicine, including diagnostic imaging, surgery, and pathological anatomy. Being part of a bilateral framework co-tutelage agreement leading to a joint Doctoral Degree between the Alma Mater Studiorum of Bologna, Italy and the Universidad Nacional del Litoral of Santa Fe, Argentina, this research project was partly carried out in Italy (study of guinea pigs) and partly in Argentina (study of capybaras). It consisted in the macroscopic study, through anatomical dissections of carcasses of both species as well as the use of anatomical casts, and in the histological study of the various systems in the two species, and was aimed at creating a gross and microscopic comparative anatomical atlas. From the gross and microscopic morphological and morphometrical anatomical study of the different system of the guinea pig and capybara, several analogies and differences emerged. The creation of a comparative anatomical atlas of gross and microscopic anatomy of the capybara and the guinea pig might prove useful for clinical, zootechnical and research purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ventral premotor cortex (PMv) is believed to play a pivotal role in a multitude of visuomotor behaviors, such as sensory-guided goal-directed visuomotor transformations, arbitrary visuomotor mapping, and hyper-learnt visuomotor associations underlying automatic imitative tendencies. All these functions are likely carried out through the copious projections connecting PMv to the primary motor cortex (M1). Yet, causal evidence investigating the functional relevance of the PMv-M1 network remains elusive and scarce. In the studies reported in this thesis we addressed this issue using a transcranial magnetic stimulation (TMS) protocol called cortico-cortical paired associative stimulation (ccPAS), which relies on multisite stimulation to induce Hebbian spike-timing dependent plasticity (STDP) by repeatedly stimulating the pathway connecting two target areas to manipulate their connectivity. Firstly, we show that ccPAS protocols informed by both short- and long-latency PMv-M1 interactions effectively modulate connectivity between the two nodes. Then, by pre-activating the network to apply ccPAS in a state-dependent manner, we were able to selectively target specific functional visuo-motor pathways, demonstrating the relevance of PMv-M1 connectivity to arbitrary visuomotor mapping. Subsequently, we addressed the PMv-to-M1 role in automatic imitation, and demonstrated that its connectivity manipulation has a corresponding impact on automatic imitative tendencies. Finally, by combining dual-coil TMS connectivity assessments and ccPAS in young and elderly individuals, we traced effective connectivity of premotor-motor networks and tested their plasticity and relevance to manual dexterity and force in healthy ageing. Our findings provide unprecedent causal evidence of the functional role of the PMv-to-M1 network in young and elderly individuals. The studies presented in this thesis suggest that ccPAS can effectively modulate the strength of connectivity between targeted areas, and coherently manipulate a networks’ behavioral output. Results open new research prospects into the causal role of cortico-cortical connectivity, and provide necessary information to the development of clinical interventions based on connectivity manipulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Era of precision medicine and big medical data sharing, it is necessary to solve the work-flow of digital radiological big data in a productive and effective way. In particular, nowadays, it is possible to extract information “hidden” in digital images, in order to create diagnostic algorithms helping clinicians to set up more personalized therapies, which are in particular targets of modern oncological medicine. Digital images generated by the patient have a “texture” structure that is not visible but encrypted; it is “hidden” because it cannot be recognized by sight alone. Thanks to artificial intelligence, pre- and post-processing software and generation of mathematical calculation algorithms, we could perform a classification based on non-visible data contained in radiological images. Being able to calculate the volume of tissue body composition could lead to creating clasterized classes of patients inserted in standard morphological reference tables, based on human anatomy distinguished by gender and age, and maybe in future also by race. Furthermore, the branch of “morpho-radiology" is a useful modality to solve problems regarding personalized therapies, which is particularly needed in the oncological field. Actually oncological therapies are no longer based on generic drugs but on target personalized therapy. The lack of gender and age therapies table could be filled thanks to morpho-radiology data analysis application.