940 resultados para An eddy-resolving ocean model simulation
Resumo:
Access control (AC) limits access to the resources of a system only to authorized entities. Given that information systems today are increasingly interconnected, AC is extremely important. The implementation of an AC service is a complicated task. Yet the requirements to an AC service vary a lot. Accordingly, the design of an AC service should be flexible and extensible in order to save development effort and time. Unfortunately, with conventional object-oriented techniques, when an extension has not been anticipated at the design time, the modification incurred by the extension is often invasive. Invasive changes destroy design modularity, further deteriorate design extensibility, and even worse, they reduce product reliability. ^ A concern is crosscutting if it spans multiple object-oriented classes. It was identified that invasive changes were due to the crosscutting nature of most unplanned extensions. To overcome this problem, an aspect-oriented design approach for AC services was proposed, as aspect-oriented techniques could effectively encapsulate crosscutting concerns. The proposed approach was applied to develop an AC framework that supported role-based access control model. In the framework, the core role-based access control mechanism is given in an object-oriented design, while each extension is captured as an aspect. The resulting framework is well-modularized, flexible, and most importantly, supports noninvasive adaptation. ^ In addition, a process to formalize the aspect-oriented design was described. The purpose is to provide high assurance for AC services. Object-Z was used to specify the static structure and Predicate/Transition net was used to model the dynamic behavior. Object-Z was extended to facilitate specification in an aspect-oriented style. The process of formal modeling helps designers to enhance their understanding of the design, hence to detect problems. Furthermore, the specification can be mathematically verified. This provides confidence that the design is correct. It was illustrated through an example that the model was ready for formal analysis. ^
Resumo:
Exchange rate economics has achieved substantial development in the past few decades. Despite extensive research, a large number of unresolved problems remain in the exchange rate debate. This dissertation studied three puzzling issues aiming to improve our understanding of exchange rate behavior. Chapter Two used advanced econometric techniques to model and forecast exchange rate dynamics. Chapter Three and Chapter Four studied issues related to exchange rates using the theory of New Open Economy Macroeconomics. ^ Chapter Two empirically examined the short-run forecastability of nominal exchange rates. It analyzed important empirical regularities in daily exchange rates. Through a series of hypothesis tests, a best-fitting fractionally integrated GARCH model with skewed student-t error distribution was identified. The forecasting performance of the model was compared with that of a random walk model. Results supported the contention that nominal exchange rates seem to be unpredictable over the short run in the sense that the best-fitting model cannot beat the random walk model in forecasting exchange rate movements. ^ Chapter Three assessed the ability of dynamic general-equilibrium sticky-price monetary models to generate volatile foreign exchange risk premia. It developed a tractable two-country model where agents face a cash-in-advance constraint and set prices to the local market; the exogenous money supply process exhibits time-varying volatility. The model yielded approximate closed form solutions for risk premia and real exchange rates. Numerical results provided quantitative evidence that volatile risk premia can endogenously arise in a new open economy macroeconomic model. Thus, the model had potential to rationalize the Uncovered Interest Parity Puzzle. ^ Chapter Four sought to resolve the consumption-real exchange rate anomaly, which refers to the inability of most international macro models to generate negative cross-correlations between real exchange rates and relative consumption across two countries as observed in the data. While maintaining the assumption of complete asset markets, this chapter introduced endogenously segmented asset markets into a dynamic sticky-price monetary model. Simulation results showed that such a model could replicate the stylized fact that real exchange rates tend to move in an opposite direction with respect to relative consumption. ^
Resumo:
The total time a customer spends in the business process system, called the customer cycle-time, is a major contributor to overall customer satisfaction. Business process analysts and designers are frequently asked to design process solutions with optimal performance. Simulation models have been very popular to quantitatively evaluate the business processes; however, simulation is time-consuming and it also requires extensive modeling experiences to develop simulation models. Moreover, simulation models neither provide recommendations nor yield optimal solutions for business process design. A queueing network model is a good analytical approach toward business process analysis and design, and can provide a useful abstraction of a business process. However, the existing queueing network models were developed based on telephone systems or applied to manufacturing processes in which machine servers dominate the system. In a business process, the servers are usually people. The characteristics of human servers should be taken into account by the queueing model, i.e. specialization and coordination. ^ The research described in this dissertation develops an open queueing network model to do a quick analysis of business processes. Additionally, optimization models are developed to provide optimal business process designs. The queueing network model extends and improves upon existing multi-class open-queueing network models (MOQN) so that the customer flow in the human-server oriented processes can be modeled. The optimization models help business process designers to find the optimal design of a business process with consideration of specialization and coordination. ^ The main findings of the research are, first, parallelization can reduce the cycle-time for those customer classes that require more than one parallel activity; however, the coordination time due to the parallelization overwhelms the savings from parallelization under the high utilization servers since the waiting time significantly increases, thus the cycle-time increases. Third, the level of industrial technology employed by a company and coordination time to mange the tasks have strongest impact on the business process design; as the level of industrial technology employed by the company is high; more division is required to improve the cycle-time; as the coordination time required is high; consolidation is required to improve the cycle-time. ^
Resumo:
In topographically flat wetlands, where shallow water table and conductive soil may develop as a result of wet and dry seasons, the connection between surface water and groundwater is not only present, but perhaps the key factor dominating the magnitude and direction of water flux. Due to their complex characteristics, modeling waterflow through wetlands using more realistic process formulations (integrated surface-ground water and vegetative resistance) is an actual necessity. This dissertation focused on developing an integrated surface – subsurface hydrologic simulation numerical model by programming and testing the coupling of the USGS MODFLOW-2005 Groundwater Flow Process (GWF) package (USGS, 2005) with the 2D surface water routing model: FLO-2D (O’Brien et al., 1993). The coupling included the necessary procedures to numerically integrate and verify both models as a single computational software system that will heretofore be referred to as WHIMFLO-2D (Wetlands Hydrology Integrated Model). An improved physical formulation of flow resistance through vegetation in shallow waters based on the concept of drag force was also implemented for the simulations of floodplains, while the use of the classical methods (e.g., Manning, Chezy, Darcy-Weisbach) to calculate flow resistance has been maintained for the canals and deeper waters. A preliminary demonstration exercise WHIMFLO-2D in an existing field site was developed for the Loxahatchee Impoundment Landscape Assessment (LILA), an 80 acre area, located at the Arthur R. Marshall Loxahatchee National Wild Life Refuge in Boynton Beach, Florida. After applying a number of simplifying assumptions, results have illustrated the ability of the model to simulate the hydrology of a wetland. In this illustrative case, a comparison between measured and simulated stages level showed an average error of 0.31% with a maximum error of 2.8%. Comparison of measured and simulated groundwater head levels showed an average error of 0.18% with a maximum of 2.9%. The coupling of FLO-2D model with MODFLOW-2005 model and the incorporation of the dynamic effect of flow resistance due to vegetation performed in the new modeling tool WHIMFLO-2D is an important contribution to the field of numerical modeling of hydrologic flow in wetlands.
Resumo:
Parenteral use of drugs; such as opiates exert immunomodulatory effects and serve as a cofactor in the progression of HIV-1 infection, thereby potentiating HIV related neurotoxicity ultimately leading to progression of NeuroAIDS. Morphine exposure is known to induce apoptosis, down regulate cAMP response element-binding (CREB) expression and decrease in dendritic branching and spine density in cultured cells. Use of neuroprotective agent; brain derived neurotropic factor (BDNF), which protects neurons against these effects, could be of therapeutic benefit in the treatment of opiate addiction. Previous studies have shown that BDNF was not transported through the blood brain barrier (BBB) in-vivo.; and hence it is not effectivein-vivo. Therefore development of a drug delivery system that can cross BBB may have significant therapeutic advantage. In the present study, we hypothesized that magnetically guided nanocarrier may provide a viable approach for targeting BDNF across the BBB. We developed a magnetic nanoparticle (MNP) based carrier bound to BDNF and evaluated its efficacy and ability to transmigrate across the BBB using an in-vitro BBB model. The end point determinations of BDNF that crossed BBB were apoptosis, CREB expression and dendritic spine density measurement. We found that transmigrated BDNF was effective in suppressing the morphine induced apoptosis, inducing CREB expression and restoring the spine density. Our results suggest that the developed nanocarrier will provide a potential therapeutic approach to treat opiate addiction, protect neurotoxicity and synaptic density degeneration.
Resumo:
Integrated project delivery (IPD) method has recently emerged as an alternative to traditional delivery methods. It has the potential to overcome inefficiencies of traditional delivery methods by enhancing collaboration among project participants. Information and communication technology (ICT) facilitates IPD by effective management, processing and communication of information within and among organizations. While the benefits of IPD, and the role of ICT in realizing them, have been generally acknowledged, the US public construction sector is very slow in adopting IPD. The reasons are - lack of experience and inadequate understanding of IPD in public owner as confirmed by the results of the questionnaire survey conducted under this research study. The public construction sector should be aware of the value of IPD and should know the essentials for effective implementation of IPD principles - especially, they should be cognizant of the opportunities offered by advancements in ICT to realize this.^ In order to address the need an IPD Readiness Assessment Model (IPD-RAM) was developed in this research study. The model was designed with a goal to determine IPD readiness of a public owner organization considering selected IPD principles, and ICT levels, at which project functions were carried out. Subsequent analysis led to identification of possible improvements in ICTs that have the potential to increase IPD readiness scores. Termed as the gap identification, this process was used to formulate improvement strategies. The model had been applied to six Florida International University (FIU) construction projects (case studies). The results showed that the IPD readiness of the organization was considerably low and several project functions can be improved by using higher and/or advanced level ICT tools and methods. Feedbacks from a focus group comprised of FIU officials and an independent group of experts had been received at various stages of this research and had been utilized during development and implementation of the model. Focus group input was also helpful for validation of the model and its results. It was hoped that the model developed would be useful to construction owner organizations in order to assess their IPD readiness and to identify appropriate ICT improvement strategies.^
Resumo:
Exchange rate economics has achieved substantial development in the past few decades. Despite extensive research, a large number of unresolved problems remain in the exchange rate debate. This dissertation studied three puzzling issues aiming to improve our understanding of exchange rate behavior. Chapter Two used advanced econometric techniques to model and forecast exchange rate dynamics. Chapter Three and Chapter Four studied issues related to exchange rates using the theory of New Open Economy Macroeconomics. Chapter Two empirically examined the short-run forecastability of nominal exchange rates. It analyzed important empirical regularities in daily exchange rates. Through a series of hypothesis tests, a best-fitting fractionally integrated GARCH model with skewed student-t error distribution was identified. The forecasting performance of the model was compared with that of a random walk model. Results supported the contention that nominal exchange rates seem to be unpredictable over the short run in the sense that the best-fitting model cannot beat the random walk model in forecasting exchange rate movements. Chapter Three assessed the ability of dynamic general-equilibrium sticky-price monetary models to generate volatile foreign exchange risk premia. It developed a tractable two-country model where agents face a cash-in-advance constraint and set prices to the local market; the exogenous money supply process exhibits time-varying volatility. The model yielded approximate closed form solutions for risk premia and real exchange rates. Numerical results provided quantitative evidence that volatile risk premia can endogenously arise in a new open economy macroeconomic model. Thus, the model had potential to rationalize the Uncovered Interest Parity Puzzle. Chapter Four sought to resolve the consumption-real exchange rate anomaly, which refers to the inability of most international macro models to generate negative cross-correlations between real exchange rates and relative consumption across two countries as observed in the data. While maintaining the assumption of complete asset markets, this chapter introduced endogenously segmented asset markets into a dynamic sticky-price monetary model. Simulation results showed that such a model could replicate the stylized fact that real exchange rates tend to move in an opposite direction with respect to relative consumption.
Resumo:
This dissertation focused on developing an integrated surface – subsurface hydrologic simulation numerical model by programming and testing the coupling of the USGS MODFLOW-2005 Groundwater Flow Process (GWF) package (USGS, 2005) with the 2D surface water routing model: FLO-2D (O’Brien et al., 1993). The coupling included the necessary procedures to numerically integrate and verify both models as a single computational software system that will heretofore be referred to as WHIMFLO-2D (Wetlands Hydrology Integrated Model). An improved physical formulation of flow resistance through vegetation in shallow waters based on the concept of drag force was also implemented for the simulations of floodplains, while the use of the classical methods (e.g., Manning, Chezy, Darcy-Weisbach) to calculate flow resistance has been maintained for the canals and deeper waters. A preliminary demonstration exercise WHIMFLO-2D in an existing field site was developed for the Loxahatchee Impoundment Landscape Assessment (LILA), an 80 acre area, located at the Arthur R. Marshall Loxahatchee National Wild Life Refuge in Boynton Beach, Florida. After applying a number of simplifying assumptions, results have illustrated the ability of the model to simulate the hydrology of a wetland. In this illustrative case, a comparison between measured and simulated stages level showed an average error of 0.31% with a maximum error of 2.8%. Comparison of measured and simulated groundwater head levels showed an average error of 0.18% with a maximum of 2.9%.
Resumo:
In this work, we present our understanding about the article of Aksoy [1], which uses Markov chains to model the flow of intermittent rivers. Then, we executed an application of his model in order to generate data for intermittent streamflows, based on a data set of Brazilian streams. After that, we build a hidden Markov model as a proposed new approach to the problem of simulation of such flows. We used the Gamma distribution to simulate the increases and decreases in river flows, along with a two-state Markov chain. The motivation for us to use a hidden Markov model comes from the possibility of obtaining the same information that the Aksoy’s model provides, but using a single tool capable of treating the problem as a whole, and not through multiple independent processes
Resumo:
In longitudinal data analysis, our primary interest is in the regression parameters for the marginal expectations of the longitudinal responses; the longitudinal correlation parameters are of secondary interest. The joint likelihood function for longitudinal data is challenging, particularly for correlated discrete outcome data. Marginal modeling approaches such as generalized estimating equations (GEEs) have received much attention in the context of longitudinal regression. These methods are based on the estimates of the first two moments of the data and the working correlation structure. The confidence regions and hypothesis tests are based on the asymptotic normality. The methods are sensitive to misspecification of the variance function and the working correlation structure. Because of such misspecifications, the estimates can be inefficient and inconsistent, and inference may give incorrect results. To overcome this problem, we propose an empirical likelihood (EL) procedure based on a set of estimating equations for the parameter of interest and discuss its characteristics and asymptotic properties. We also provide an algorithm based on EL principles for the estimation of the regression parameters and the construction of a confidence region for the parameter of interest. We extend our approach to variable selection for highdimensional longitudinal data with many covariates. In this situation it is necessary to identify a submodel that adequately represents the data. Including redundant variables may impact the model’s accuracy and efficiency for inference. We propose a penalized empirical likelihood (PEL) variable selection based on GEEs; the variable selection and the estimation of the coefficients are carried out simultaneously. We discuss its characteristics and asymptotic properties, and present an algorithm for optimizing PEL. Simulation studies show that when the model assumptions are correct, our method performs as well as existing methods, and when the model is misspecified, it has clear advantages. We have applied the method to two case examples.
Resumo:
This data sets contains LPJ-LMfire dynamic global vegetation model output covering Europe and the Mediterranean for the Last Glacial Maximum (LGM; 21 ka) and for a preindustrial control simulation (20th century detrended climate). The netCDF data files are time averages of the final 30 years of the model simulation. Each netCDF file contains four or five variables: fractional cover of 9 plant functional types (PFTs; cover), total fractional coverage of trees (treecover), population density of hunter-gatherers (foragerPD; only for the "people" simulations), fraction of the gridcell burned on 30-year average (burnedf), and vegetation net primary productivity (NPP). The model spatial resolution is 0.5-degrees For the LGM simulations, LPJ-LMfire was driven by the PMIP3 suite of eight GCMs for which LGM climate simulations were available. Also provided in this archive is the result of an LPJ-LMfire run that was forced by the average climate of all GCMs (the "GCM-mean" files), and the average of each of the individual LPJ-LMfire runs over the eight LGM scenarios individually (the "LPJ-mean" files). The model simulations are provided that include the influence of human presence on the landscape (the "people" files), and in a "world without humans" scenario (the "natural" files). Finally this archive contains the preindustrial reference simulation with and without human influence ("PI_reference_people" and "PI_reference_nat", respectively). There are therefore 22 netCDF files in this archive: 8 each of LGM simulations with and without people (total 16) and the "GCM mean" simulation (2 files) and the "LPJ mean" aggregate (2 files), and finally the two preindustrial "control" simulations ("PI"), with and without humans (2 files). In addition to the LPJ-LMfire model output (netCDF files), this archive also contains a table of arboreal pollen percent calculated from pollen samples dated to the LGM at sites throughout (lgmAP.txt), and a table containing the location of archaeological sites dated to the LGM (LGM_archaeological_site_locations.txt).
Resumo:
L’épaule est l’articulation la plus mobile et la plus instable du corps humain dû à la faible quantité de contraintes osseuses et au rôle des tissus mous qui lui confèrent au moins une dizaine de degrés de liberté. La mobilité de l’épaule est un facteur de performance dans plusieurs sports. Mais son instabilité engendre des troubles musculo-squelettiques, dont les déchirures de la coiffe des rotateurs sont fréquentes et les plus handicapantes. L’évaluation de l’amplitude articulaire est un indice commun de la fonction de l’épaule, toutefois elle est souvent limitée à quelques mesures planaires pour lesquelles les degrés de liberté varient indépendamment les uns des autres. Ces valeurs utilisées dans les modèles de simulation musculo-squelettiques peuvent amener à des solutions non physiologiques. L’objectif de cette thèse était de développer des outils pour la caractérisation de la mobilité articulaire tri-dimensionnelle de l’épaule, en passant par i) fournir une méthode et son approche expérimentale pour évaluer l’amplitude articulaire tridimensionnelle de l’épaule incluant des interactions entre les degrés de liberté ; ii) proposer une représentation permettant d’interpréter les données tri-dimensionnelles obtenues; iii) présenter des amplitudes articulaires normalisées, iv) implémenter une amplitude articulaire tridimensionnelle au sein d’un modèle de simulation numérique afin de générer des mouvements sportifs optimaux plus réalistes; v) prédire des amplitudes articulaires sécuritaires et vi) des exercices de rééducation sécuritaires pour des patients ayant subi une réparation de la coiffe des rotateurs. i) Seize sujets ont été réalisé séries de mouvements d’amplitudes maximales actifs avec des combinaisons entre les différents degrés de liberté de l’épaule. Un système d’analyse du mouvement couplé à un modèle cinématique du membre supérieur a été utilisé pour estimer les cinématiques articulaires tridimensionnelles. ii) L’ensemble des orientations définies par une séquence de trois angles a été inclus dans un polyèdre non convexe représentant l’espace de mobilité articulaire prenant en compte les interactions entre les degrés de liberté. La combinaison des séries d’élévation et de rotation est recommandée pour évaluer l’amplitude articulaire complète de l’épaule. iii) Un espace de mobilité normalisé a également été défini en englobant les positions atteintes par au moins 50% des sujets et de volume moyen. iv) Cet espace moyen, définissant la mobilité physiologiques, a été utilisé au sein d’un modèle de simulation cinématique utilisé pour optimiser la technique d’un élément acrobatique de lâcher de barres réalisée par des gymnastes. Avec l’utilisation régulière de limites articulaires planaires pour contraindre la mobilité de l’épaule, seulement 17% des solutions optimales sont physiologiques. En plus, d’assurer le réalisme des solutions, notre contrainte articulaire tridimensionnelle n’a pas affecté le coût de calculs de l’optimisation. v) et vi) Les seize participants ont également réalisé des séries d’amplitudes articulaires passives et des exercices de rééducation passifs. La contrainte dans l’ensemble des muscles de la coiffe des rotateurs au cours de ces mouvements a été estimée à l’aide d’un modèle musculo-squelettique reproduisant différents types et tailles de déchirures. Des seuils de contrainte sécuritaires ont été utilisés pour distinguer les amplitudes de mouvements risquées ou non pour l’intégrité de la réparation chirurgicale. Une taille de déchirure plus grande ainsi que les déchirures affectant plusieurs muscles ont contribué à réduire l’espace de mobilité articulaire sécuritaire. Principalement les élévations gléno-humérales inférieures à 38° et supérieures à 65°, ou réalisées avec le bras maintenu en rotation interne engendrent des contraintes excessives pour la plupart des types et des tailles de blessure lors de mouvements d’abduction, de scaption ou de flexion. Cette thèse a développé une représentation innovante de la mobilité de l’épaule, qui tient compte des interactions entre les degrés de liberté. Grâce à cette représentation, l’évaluation clinique pourra être plus exhaustive et donc élargir les possibilités de diagnostiquer les troubles de l’épaule. La simulation de mouvement peut maintenant être plus réaliste. Finalement, nous avons montré l’importance de personnaliser la rééducation des patients en termes d’amplitude articulaire, puisque des exercices passifs de rééducation précoces peuvent contribuer à une re-déchirure à cause d’une contrainte trop importante qu’ils imposent aux tendons.
Resumo:
Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by alterations in social functioning, communicative abilities, and engagement in repetitive or restrictive behaviors. The process of aging in individuals with autism and related neurodevelopmental disorders is not well understood, despite the fact that the number of individuals with ASD aged 65 and older is projected to increase by over half a million individuals in the next 20 years. To elucidate the effects of aging in the context of a modified central nervous system, we investigated the effects of age on the BTBR T + tf/j mouse, a well characterized and widely used mouse model that displays an ASD-like phenotype. We found that a reduction in social behavior persists into old age in male BTBR T + tf/j mice. We employed quantitative proteomics to discover potential alterations in signaling systems that could regulate aging in the BTBR mice. Unbiased proteomic analysis of hippocampal and cortical tissue of BTBR mice compared to age-matched wild-type controls revealed a significant decrease in brain derived neurotrophic factor and significant increases in multiple synaptic markers (spinophilin, Synapsin I, PSD 95, NeuN), as well as distinct changes in functional pathways related to these proteins, including "Neural synaptic plasticity regulation" and "Neurotransmitter secretion regulation." Taken together, these results contribute to our understanding of the effects of aging on an ASD-like mouse model in regards to both behavior and protein alterations, though additional studies are needed to fully understand the complex interplay underlying aging in mouse models displaying an ASD-like phenotype.
Resumo:
Integrated project delivery (IPD) method has recently emerged as an alternative to traditional delivery methods. It has the potential to overcome inefficiencies of traditional delivery methods by enhancing collaboration among project participants. Information and communication technology (ICT) facilitates IPD by effective management, processing and communication of information within and among organizations. While the benefits of IPD, and the role of ICT in realizing them, have been generally acknowledged, the US public construction sector is very slow in adopting IPD. The reasons are - lack of experience and inadequate understanding of IPD in public owner as confirmed by the results of the questionnaire survey conducted under this research study. The public construction sector should be aware of the value of IPD and should know the essentials for effective implementation of IPD principles - especially, they should be cognizant of the opportunities offered by advancements in ICT to realize this. In order to address the need an IPD Readiness Assessment Model (IPD-RAM) was developed in this research study. The model was designed with a goal to determine IPD readiness of a public owner organization considering selected IPD principles, and ICT levels, at which project functions were carried out. Subsequent analysis led to identification of possible improvements in ICTs that have the potential to increase IPD readiness scores. Termed as the gap identification, this process was used to formulate improvement strategies. The model had been applied to six Florida International University (FIU) construction projects (case studies). The results showed that the IPD readiness of the organization was considerably low and several project functions can be improved by using higher and/or advanced level ICT tools and methods. Feedbacks from a focus group comprised of FIU officials and an independent group of experts had been received at various stages of this research and had been utilized during development and implementation of the model. Focus group input was also helpful for validation of the model and its results. It was hoped that the model developed would be useful to construction owner organizations in order to assess their IPD readiness and to identify appropriate ICT improvement strategies.
Resumo:
Sea ice models contain many different parameterizations of which one of the most commonly used is a subgrid-scale ice thickness distribution (ITD). The effect of this model component and the associated ice strength formulation on the reproduction of observed Arctic sea ice is assessed. To this end the model's performance in reproducing satellite observations of sea ice concentration, thickness and drift is evaluated. For an unbiased comparison, different model configurations with and without an ITD are tuned with an automated parameter optimization. The original combination of ITD and ice strength parameterization does not lead to better results than a simple single category model. Yet changing to a simpler ice strength formulation, which depends linearly on the mean ice thickness across all thickness categories, allows to clearly improve the model-data misfit when using an ITD. In the original formulation, the ice strength depends strongly on the number of thickness categories, so that introducing more categories can lead to thicker albeit weaker ice on average.