929 resultados para Amplifier


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade, we have witnessed the emergence of large, warehouse-scale data centres which have enabled new internet-based software applications such as cloud computing, search engines, social media, e-government etc. Such data centres consist of large collections of servers interconnected using short-reach (reach up to a few hundred meters) optical interconnect. Today, transceivers for these applications achieve up to 100Gb/s by multiplexing 10x 10Gb/s or 4x 25Gb/s channels. In the near future however, data centre operators have expressed a need for optical links which can support 400Gb/s up to 1Tb/s. The crucial challenge is to achieve this in the same footprint (same transceiver module) and with similar power consumption as today’s technology. Straightforward scaling of the currently used space or wavelength division multiplexing may be difficult to achieve: indeed a 1Tb/s transceiver would require integration of 40 VCSELs (vertical cavity surface emitting laser diode, widely used for short‐reach optical interconnect), 40 photodiodes and the electronics operating at 25Gb/s in the same module as today’s 100Gb/s transceiver. Pushing the bit rate on such links beyond today’s commercially available 100Gb/s/fibre will require new generations of VCSELs and their driver and receiver electronics. This work looks into a number of state‐of-the-art technologies and investigates their performance restraints and recommends different set of designs, specifically targeting multilevel modulation formats. Several methods to extend the bandwidth using deep submicron (65nm and 28nm) CMOS technology are explored in this work, while also maintaining a focus upon reducing power consumption and chip area. The techniques used were pre-emphasis in rising and falling edges of the signal and bandwidth extensions by inductive peaking and different local feedback techniques. These techniques have been applied to a transmitter and receiver developed for advanced modulation formats such as PAM-4 (4 level pulse amplitude modulation). Such modulation format can increase the throughput per individual channel, which helps to overcome the challenges mentioned above to realize 400Gb/s to 1Tb/s transceivers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reflective modulators based on the combination of an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) are attractive devices for applications in long reach carrier distributed passive optical networks (PONs) due to the gain provided by the SOA and the high speed and low chirp modulation of the EAM. Integrated R-EAM-SOAs have experimentally shown two unexpected and unintuitive characteristics which are not observed in a single pass transmission SOA: the clamping of the output power of the device around a maximum value and low patterning distortion despite the SOA being in a regime of gain saturation. In this thesis a detailed analysis is carried out using both experimental measurements and modelling in order to understand these phenomena. For the first time it is shown that both the internal loss between SOA and R-EAM and the SOA gain play an integral role in the behaviour of gain saturated R-EAM-SOAs. Internal loss and SOA gain are also optimised for use in a carrier distributed PONs in order to access both the positive effect of output power clamping, and hence upstream dynamic range reduction, combined with low patterning operation of the SOA Reflective concepts are also gaining interest for metro transport networks and short reach, high bit rate, inter-datacentre links. Moving the optical carrier generation away from the transmitter also has potential advantages for these applications as it avoids the need for cooled photonics being placed directly on hot router line-cards. A detailed analysis is carried out in this thesis on a novel colourless reflective duobinary modulator, which would enable wavelength flexibility in a power-efficient reflective metro node.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this theoretical paper, the analysis of the effect that ON-state active-device resistance has on the performance of a Class-E tuned power amplifier using a shunt inductor topology is presented. The work is focused on the relatively unexplored area of design facilitation of Class-E tuned amplifiers where intrinsically low-output-capacitance monolithic microwave integrated circuit switching devices such as pseudomorphic high electron mobility transistors are used. In the paper, the switching voltage and current waveforms in the presence of ON-resistance are analyzed in order to provide insight into circuit properties such as RF output power, drain efficiency, and power-output capability. For a given amplifier specification, a design procedure is illustrated whereby it is possible to compute optimal circuit component values which account for prescribed switch resistance loss. Furthermore, insight into how ON-resistance affects transistor selection in terms of peak switch voltage and current requirements is described. Finally, a design example is given in order to validate the theoretical analysis against numerical simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Closed-form design equations for the operation of a class-E amplifier for zero switch voltage slope and arbitrary duty cycle are derived. This approach allows an additional degree of freedom in the design of class-E amplifiers which are normally designed for 50 duty ratio. The analysis developed permits the selection of non-unique solutions where amplifier efficiency is theoretically 100 but power output capability is less than that the 50 duty ratio case would permit. To facilitate comparison between 50 (optimal) and non-50 (suboptimal) duty ratio cases, each important amplifier parameter is normalised to its corresponding optimum operation value. It is shown that by choosing a non-50 suboptimal solution, the operating frequency of a class-E amplifier can be extended. In addition, it is shown that by operating the amplifier in the suboptimal regime, other amplifier parameters, for example, transistor output capacitance or peak switch voltage, can be included along with the standard specification criteria of output power, DC supply voltage and operating frequency as additional input design specifications. Suboptimum class-E operation may have potential advantages for monolithic microwave integrated circuit realisation as lower inductance values (lower series resistance, higher self-resonance frequency, less area) may be required when compared with the results obtained for optimal class-E amplifier synthesis. The theoretical analysis conducted here was verified by harmonic balance simulation, with excellent agreement between both methods. © The Institution of Engineering and Technology 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this brief, we propose a new Class-E frequency multiplier based on the recently introduced Series-L/Parallel-Tuned Class-E amplifier. The proposed circuit produces even-order output harmonics. Unlike previously reported solutions the proposed circuit can operate under 50% duty ratio which minimizes the conduction losses. The circuit also offers the possibility for increased maximum operating frequency, reduced peak switch voltage, higher load resistance and inherent bond wire absorption; all potentially useful in monolithic microwave integrated circuit implementations. In addition, the circuit topology suggested large transistors with high output capacitances can be deployed. Theoretical design equations are given and the predictions made using these are shown to agree with harmonic balance circuit simulation results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact that the transmission-line load-network has on the performance of the recently introduced series-L/parallel-tuned Class-E amplifier and the classic shunt-C/series-tuned configuration when compared to optimally derived lumped load networks is discussed. In addition an improved load topology which facilitates harmonic suppression of up to 5 order as required for maximum Class-E efficiency as well as load resistance transformation and a design procedure involving the use of Kuroda's identity and Richard's transformation enable a distributed synthesis process which dispenses with the need for iterative tuning as previously required in order to achieve optimum Class-E operation. © 2005 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first analysis and synthesis equations for the newly introduced inverse Class-E amplifier when operated with a finite d.c. blocking capacitance and a finite d.c.-feed inductance are presented in the paper. Closed-form design equations are derived in order to establish the circuit component values required for optimum synthesis. Excellent agreement between numerical simulation results and theoretical prediction is obtained. It is shown that drain efficiency approaching 100 at a pre-specified output power level can be achieved as zero-current switching and zero-current derivative conditions are simultaneously satisfied. The proposed analysis offers the prospect for realistic MMIC implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The losses within the substrate of an RF IC can have significant effect on performance in a mixed signal application. in order to model substrate coupling accurately, it is represented by an RC network to account for both resistive and dielectric losses at high frequency (> 1 GHz). A small-signal equivalent circuit model of an RF IC inclusive of substrate parasitic effect is analysed in terms of its y-parameters and an extraction procedure for substrate parameters has been developed. By coupling the extracted substrate parameters along with extrinsic resistances associated with gate, source and drain, a standard BSIM3 model has been extended for RF applications. The new model exhibits a significant improvement in prediction of output reflection coefficient S-22 in the frequency range from 1 to 10 GHz in device mode of operation and for a low noise amplifier (LNA) at 2.4 GHz. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active duplex RF biomedical transponder. A 50-Ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a CMOS baseband amplifier consuming 20 microamps from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 Ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit, For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m-sq area of the ward, falling to an average of 46 % in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A power combining strategy for Class-E and inverse Class-E amplifiers operating at high frequencies such that they can operate into unbalanced loads is proposed. This power combining method is particularly important for the inverse Class-E amplifier configuration whose single-stage topology is naturally limited for small-to-medium power applications. Design examples for the power combining synthesis of classical Class-E and then inverse Class-E amplifiers with specification 3 V-1.5 W-2.5 GHz are given. For this specification, it is shown that a three-branch combiner has a natural 50 V output impedance. The resulting circuits are simulated within Agilent Advanced Design Systems environment with good agreement to theoretical prediction. Further the performance of the proposed circuits when operated in a Linear amplification using Nonlinear Components transmitter configuration whereby two-branch amplifiers are driven with constant amplitude conjugate input phase signals is investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper demonstrates the suitability of artificial neural network (ANN) for modelling of a FinFET in nano-circuit simulation. The FinFET used in this work is designed using careful engineering of source-drain extension, which simultaneously improves maximum frequency of oscillation f(max) because of lower gate to drain capacitance, and intrinsic gain A(V0) = g(m)/g(ds), due to lower output conductance g(ds). The framework for the ANN-based FinFET model is a common source equivalent circuit, where the dependence of intrinsic capacitances, resistances and dc drain current I-d on drain-source V-ds and gate-source V-gs is derived by a simple two-layered neural network architecture. All extrinsic components of the FinFET model are treated as bias independent. The model was implemented in a circuit simulator and verified by its ability to generate accurate response to excitations not used during training. The model was used to design a low-noise amplifier. At low power (J(ds) similar to 10 mu A/mu m) improvement was observed in both third-order-intercept IIP3 (similar to 10 dBm) and intrinsic gain A(V0) (similar to 20 dB), compared to a comparable bulk MOSFET with similar effective channel length. This is attributed to higher ratio of first-order to third-order derivative of I-d with respect to gate voltage and lower g(ds), in FinFET compared to bulk MOSFET. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, gain-bandwidth (GB) trade-off associated with analog device/circuit design due to conflicting requirements for enhancing gain and cutoff frequency is examined. It is demonstrated that the use of a nonclassical source/drain (S/D) profile (also known as underlap channel) can alleviate the GB trade-off associated with analog design. Operational transconductance amplifier (OTA) with 60 nm underlap S/D MOSFETs achieve 15 dB higher open loop voltage gain along with three times higher cutoff frequency as compared to OTA with classical nonunderlap S/D regions. Underlap design provides a methodology for scaling analog devices into the sub-100 nm regime and is advantageous for high temperature applications with OTA, preserving functionality up to 540 K. Advantages of underlap architecture over graded channel (GC) or laterally asymmetric channel (LAC) design in terms of GB behavior are demonstrated. Impact of transistor structural parameters on the performance of OTA is also analyzed. Results show that underlap OTAs designed with spacer-to-straggle ratio of 3.2 and operated below a bias current of 80 microamps demonstrate optimum performance. The present work provides new opportunities for realizing future ultra wide band OTA design with underlap DG MOSFETs in silicon-on-insulator (SOI) technology. Index Terms—Analog/RF, double gate, gain-bandwidth product, .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, analysis and synthesis approach for two new variants within the Class-EF power amplifier (PA) family is elaborated. These amplifiers are classified here as Class-E3 F2 and transmission-line (TL) Class-E3 F 2. The proposed circuits offer means to alleviate some of the major issues faced by existing topologies such as substantial power losses due to the parasitic resistance of the large inductor in the Class-EF load network and deviation from ideal Class-EF operation due to the effect of device output inductance at high frequencies. Both lumped-element and transmission-line load networks for the Class-E 3 F PA are described. The load networks of the Class-E3 F and TL Class-E 3 F2amplifier topologies developed in this paper simultaneously satisfy the Class-EF optimum impedance requirements at fundamental frequency, second, and third harmonics as well as simultaneously providing matching to the circuit optimum load resistance for any prescribed system load resistance. Optimum circuit component values are analytically derived and validated by harmonic balance simulations. Trade-offs between circuit figures of merit and component values with some practical limitations being considered are discussed. © 2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wide tuning range voltage controlled oscillator (VCO) with novel architecture is proposed in this work. The entire circuit consists of a VCO core, a summing circuit, a single-ended to differential (STD) converter and a buffer amplifier. The VCO core oscillates at half the desired frequency and the second harmonic of the VCO core is extracted by the summing circuit, which is then converted to a differential pair by the STD. The entire VCO circuit operates from 58.85 to 70.85 GHz with 20% frequency tuning range. The measured VCO gain is less than 1.6 GHz/V. The measured phase noise at 3 MHz offset is less than -78 dBc/Hz across the entire tuning range. The differential phase error of the output signals is measured by down converting the VCO output signals to low gigahertz frequency using an on-chip mixer. The measured differential phase error is less than 8°. The VCO circuit, which is constructed using 0.35 µm SiGe technology, occupies 770 × 550 µm2 die area and consumes 62 mA under 3.5 V supply.