992 resultados para Alveolar osteitis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic lung diseases, specifically bronchopulmonary dysplasia (BPD), are still causing mortality and morbidity amongst newborn infants. High protease activity has been suggested to have a deleterious role in oxygen-induced lung injuries. Cathepsin K (CatK) is a potent protease found in fetal lungs, degrading collagen and elastin. We hypothesized that CatK may be an important modulator of chronic lung injury in newborn infants and neonatal mice. First we measured CatK protein levels in repeated tracheal aspirate fluid samples from 13 intubated preterm infants during the first two weeks of life. The amount of CatK at 9-13 days was low in infants developing chronic lung disease. Consequently, we studied CatK mRNA expression in oxygen-exposed wild-type (WT) rats at postnatal day (PN) 14 and found decreased pulmonary mRNA expression of CatK in whole lung samples. Thereafter we demonstrated that CatK deficiency modifies lung development by accelerating the thinning of alveolar walls in newborn mice. In hyperoxia-exposed newborn mice CatK deficiency resulted in increased number of pulmonary foam cells, macrophages and amount of reduced glutathione in lung homogenates indicating intensified pulmonary oxidative stress and worse pulmonary outcome due to CatK deficiency. Conversely, transgenic overexpression of CatK caused slight enlargement of distal airspaces with increased alveolar chord length in room air in neonatal mice. While hyperoxic exposure inhibited alveolarization and resulted in enlarged airspaces in wild-type mice, these changes were significantly milder in CatK overexpressing mice at PN7. Finally, we showed that the expression of macrophage scavenger receptor 2 (MSR2) mRNA was down-regulated in oxygen-exposed CatK-deficient mice analyzed by microarray analysis. Our results demonstrate that CatK seems to participate in normal lung development and its expression is altered during pulmonary injury. In the presence of pulmonary risk factors, like high oxygen exposure, low amount of CatK may contribute to aggravated lung injury while sustained or slightly elevated amount of CatK may even protect the newborn lungs from excessive injury. Besides collagen degrading and antifibrotic function of CatK in the lungs, it is obvious that CatK may affect macrophage activity and modify oxidative stress response. In conclusion, pulmonary proteases, specifically CatK, have distinct roles in lung homeostasis and injury development, and although suggested, broad range inhibition of proteases may not be beneficial in newborn lung injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pulmonary dysfunction represents the most important cause of death in patients with paracoccidioidomycosis (PBM). In order to investigate the functional changes of the lungs in the early stages of PBM, a model of benign disease was developed by intratracheal challenge of 12-week old isogenic Wistar rats with 1 x 106 yeast forms of Paracoccidioides brasiliensis. Animals were studied 30 and 60 days after infection, when fully developed granulomas were demonstrable in the lungs. Measurements of airway resistance, lung elastance and tissue hysteresis were made during sinusoidal deformations (100 breaths/min, tidal volume = 2 ml) with direct measurement of alveolar pressure using the alveolar capsule technique. Infection caused a significant increase in hysteresis (infected: 1.69, N = 13; control: 1.13, N = 12, P = 0.024, ANOVA), with no alterations in airway resistance or lung elastance. Histopathological analysis revealed the presence of fully developed granulomas located in the axial compartment of the lung interstitial space. These results suggest that alterations of tissue mechanics represent an early event in experimental PBM

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the most characteristic feature of paraquat poisoning is lung damage, a prospective controlled study was performed on excised rat lungs in order to estimate the intensity of lesion after different doses. Twenty-five male, 2-3-month-old non-SPF Wistar rats, divided into 5 groups, received paraquat dichloride in a single intraperitoneal injection (0, 1, 5, 25, or 50 mg/kg body weight) 24 h before the experiment. Static pressure-volume (PV) curves were performed in air- and saline-filled lungs; an estimator of surface tension and tissue works was computed by integrating the area of both curves and reported as work/ml of volume displacement. Paraquat induced a dose-dependent increase of inspiratory surface tension work that reached a significant two-fold order of magnitude for 25 and 50 mg/kg body weight (P<0.05, ANOVA), sparing lung tissue. This kind of lesion was probably due to functional abnormalities of the surfactant system, as was shown by the increase in the hysteresis of the paraquat groups at the highest doses. Hence, paraquat poisoning provides a suitable model of acute lung injury with alveolar instability that can be easily used in experimental protocols of mechanical ventilation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ketamine is believed to reduce airway and pulmonary tissue resistance. The aim of the present study was to determine the effects of ketamine on the resistive, elastic and viscoelastic/inhomogeneous mechanical properties of the respiratory system, lungs and chest wall, and to relate the mechanical data to findings from histological lung analysis in normal animals. Fifteen adult male Wistar rats were assigned randomly to two groups: control (N = 7) and ketamine (N = 8). All animals were sedated (diazepam, 5 mg, ip) and anesthetized with pentobarbital sodium (20 mg/kg, ip) or ketamine (30 mg/kg, ip). The rats were paralyzed and ventilated mechanically. Ketamine increased lung viscoelastic/inhomogeneous pressure (26%) compared to the control group. Dynamic and static elastances were similar in both groups, but the difference was greater in the ketamine than in the control group. Lung morphometry demonstrated dilation of alveolar ducts and increased areas of alveolar collapse in the ketamine group. In conclusion, ketamine did not act at the airway level but acted at the lung periphery increasing mechanical inhomogeneities possibly resulting from dilation of distal airways and alveolar collapse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMP) are considered to be key initiators of collagen degradation, thus contributing to bone resorption in inflammatory diseases. We determined whether subantimicrobial doses of doxycycline (DX) (<=10 mg kg-1 day-1), a known MMP inhibitor, could inhibit bone resorption in an experimental periodontitis model. Thirty male Wistar rats (180-200 g) were subjected to placement of a nylon thread ligature around the maxillary molars and sacrificed after 7 days. Alveolar bone loss (ABL) was measured macroscopically in one hemiarcade and the contralateral hemiarcade was processed for histopathologic analysis. Groups of six animals each were treated with DX (2.5, 5 or 10 mg kg-1 day-1, sc, 7 days) and compared to nontreated (NT) rats. NT rats displayed significant ABL, severe mononuclear cell influx and increase in osteoclast numbers, which were significantly reduced by 5 or 10 mg kg-1 day-1 DX. These data show that DX inhibits inflammatory bone resorption in a manner that is independent of its antimicrobial properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toxic cyanobacteria in drinking water supplies can cause serious public health problems. In the present study we analyzed the time course of changes in lung histology in young and adult male Swiss mice injected intraperitoneally (ip) with a cyanobacterial extract containing the hepatotoxic microcystins. Microcystins are cyclical heptapeptides quantified by ELISA method. Ninety mice were divided into two groups. Group C received an injection of saline (300 µl, ip) and group Ci received a sublethal dose of microcystins (48.2 µg/kg, ip). Mice of the Ci group were further divided into young (4 weeks old) and adult (12 weeks old) animals. At 2 and 8 h and at 1, 2, 3, and 4 days after the injection of the toxic cyanobacterial extract, the mice were anesthetized and the trachea was occluded at end-expiration. The lungs were removed en bloc, fixed, sectioned, and stained with hematoxylin-eosin. The percentage of the area of alveolar collapse and the number of polymorphonuclear (PMN) and mononuclear cell infiltrations were determined by point counting. Alveolar collapse increased from C to all Ci groups (123 to 262%) independently of time, reaching a maximum value earlier in young than in adult animals. The amount of PMN cells increased with time of the lesion (52 to 161%). The inflammatory response also reached the highest level earlier in young than in adult mice. After 2 days, PMN levels remained unchanged in adult mice, while in young mice the maximum number was observed at day 1 and was similar at days 2, 3, and 4. We conclude that the toxins and/or other cyanobacterial compounds probably exert these effects by reaching the lung through the blood stream after ip injection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to compare the efficacy of a novel phosphodiesterase 4 and 5 inhibitor, LASSBio596, with that of dexamethasone in a murine model of chronic asthma. Lung mechanics (airway resistance, viscoelastic pressure, and static elastance), histology, and airway and lung parenchyma remodeling (quantitative analysis of collagen and elastic fiber) were analyzed. Thirty-three BALB/c mice were randomly assigned to four groups. In the asthma group (N = 9), mice were immunized with 10 µg ovalbumin (OVA, ip) on 7 alternate days, and after day 40 they were challenged with three intratracheal instillations of 20 µg OVA at 3-day intervals. Control mice (N = 8) received saline under the same protocol. In the dexamethasone (N = 8) and LASSBio596 (N = 8) groups, the animals of the asthma group were treated with 1 mg/kg dexamethasone disodium phosphate (0.1 mL, ip) or 10 mg/kg LASSBio596 dissolved in dimethyl sulfoxide (0.2 mL, ip) 24 h before the first intratracheal instillation of OVA, for 8 days. Airway resistance, viscoelastic pressure and static elastance increased significantly in the asthma group (77, 56, and 76%, respectively) compared to the control group. The asthma group presented more intense alveolar collapse, bronchoconstriction, and eosinophil and neutrophil infiltration than the control group. Both LASSBio596 and dexamethasone inhibited the changes in lung mechanics, tissue cellularity, bronchoconstriction, as well as airway and lung parenchyma remodeling. In conclusion, LASSBio596 at a dose of 10 mg/kg effectively prevented lung mechanical and morphometrical changes and had the potential to block fibroproliferation in a BALB/c mouse model of asthma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical forces affect both the function and phenotype of cells in the lung. Bronchial, alveolar, and other parenchymal cells, as well as fibroblasts and macrophages, are normally subjected to a variety of passive and active mechanical forces associated with lung inflation and vascular perfusion as a result of the dynamic nature of lung function. These forces include changes in stress (force per unit area) or strain (any forced change in length in relation to the initial length) and shear stress (the stress component parallel to a given surface). The responses of cells to mechanical forces are the result of the cell's ability to sense and transduce these stimuli into intracellular signaling pathways able to communicate the information to its interior. This review will focus on the modulation of intracellular pathways by lung mechanical forces and the intercellular signaling. A better understanding of the mechanisms by which lung cells transduce physical forces into biochemical and biological signals is of key importance for identifying targets for the treatment and prevention of physical force-related disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to determine the ventilation/perfusion ratio that contributes to hypoxemia in pulmonary embolism by analyzing blood gases and volumetric capnography in a model of experimental acute pulmonary embolism. Pulmonary embolization with autologous blood clots was induced in seven pigs weighing 24.00 ± 0.6 kg, anesthetized and mechanically ventilated. Significant changes occurred from baseline to 20 min after embolization, such as reduction in oxygen partial pressures in arterial blood (from 87.71 ± 8.64 to 39.14 ± 6.77 mmHg) and alveolar air (from 92.97 ± 2.14 to 63.91 ± 8.27 mmHg). The effective alveolar ventilation exhibited a significant reduction (from 199.62 ± 42.01 to 84.34 ± 44.13) consistent with the fall in alveolar gas volume that effectively participated in gas exchange. The relation between the alveolar ventilation that effectively participated in gas exchange and cardiac output (V Aeff/Q ratio) also presented a significant reduction after embolization (from 0.96 ± 0.34 to 0.33 ± 0.17 fraction). The carbon dioxide partial pressure increased significantly in arterial blood (from 37.51 ± 1.71 to 60.76 ± 6.62 mmHg), but decreased significantly in exhaled air at the end of the respiratory cycle (from 35.57 ± 1.22 to 23.15 ± 8.24 mmHg). Exhaled air at the end of the respiratory cycle returned to baseline values 40 min after embolism. The arterial to alveolar carbon dioxide gradient increased significantly (from 1.94 ± 1.36 to 37.61 ± 12.79 mmHg), as also did the calculated alveolar (from 56.38 ± 22.47 to 178.09 ± 37.46 mL) and physiological (from 0.37 ± 0.05 to 0.75 ± 0.10 fraction) dead spaces. Based on our data, we conclude that the severe arterial hypoxemia observed in this experimental model may be attributed to the reduction of the V Aeff/Q ratio. We were also able to demonstrate that V Aeff/Q progressively improves after embolization, a fact attributed to the alveolar ventilation redistribution induced by hypocapnic bronchoconstriction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effect of etoricoxib, a selective cyclooxygenase-2 inhibitor, and indomethacin, a non-selective cyclooxygenase inhibitor, on experimental periodontitis, and compared their gastrointestinal side effects. A ligature was placed around the second upper left molars of female Wistar rats (160 to 200 g). Animals (6 per group) were treated daily with oral doses of 3 or 9 mg/kg etoricoxib, 5 mg/kg indomethacin, or 0.2 mL saline, starting 5 days after the induction of periodontitis, when bone resorption was detected, until the sacrifice on the 11th day. The weight and survival rate were monitored. Alveolar bone loss (ABL) was measured as the sum of distances between the cusp tips and the alveolar bone. The gastric mucosa was examined macroscopically and the periodontium and gastric and intestinal mucosa were examined by histopathology. The ongoing ABL was significantly inhibited (P < 0.05) by 3 and 9 mg/kg etoricoxib and by indomethacin: control = 4.08 ± 0.47 mm; etoricoxib (3 mg/kg) = 1.89 ± 0.26 mm; etoricoxib (9 mg/kg) = 1.02 ± 0.14 mm; indomethacin = 0.64 ± 0.15 mm. Histopathology of periodontium showed that etoricoxib and indomethacin reduced inflammatory cell infiltration, ABL, and cementum and collagen fiber destruction. Macroscopic and histopathological analysis of gastric and intestinal mucosa demonstrated that etoricoxib induces less damage than indomethacin. Animals that received indomethacin presented weight loss starting on the 7th day, and higher mortality rate (58.3%) compared to etoricoxib (0%). Treatment with etoricoxib, even starting when ABL is detected, reduces inflammation and cementum and bone resorption, with fewer gastrointestinal side effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed the effects of saline infusion for the maintenance of blood volume on pulmonary gas exchange in ischemia-reperfusion syndrome during temporary abdominal aortic occlusion in dogs. We studied 20 adult mongrel dogs weighing 12 to 23 kg divided into two groups: ischemia-reperfusion group (IRG, N = 10) and IRG submitted to saline infusion for the maintenance of mean pulmonary arterial wedge pressure between 10 and 20 mmHg (IRG-SS, N = 10). All animals were anesthetized and maintained on spontaneous ventilation. After obtaining baseline measurements, occlusion of the supraceliac aorta was performed by the inflation of a Fogarty catheter. After 60 min of ischemia, the balloon was deflated and the animals were observed for another 60 min of reperfusion. The measurements were made at 10 and 45 min of ischemia, and 5, 30, and 60 min of reperfusion. Pulmonary gas exchange was impaired in the IRG-SS group as demonstrated by the increase of the alveolar-arterial oxygen difference (21 ± 14 in IRG-SS vs 11 ± 8 in IRG after 60 min of reperfusion, P = 0.004 in IRG-SS in relation to baseline values) and the decrease of oxygen partial pressure in arterial blood (58 ± 15 in IRG-SS vs 76 ± 15 in IRG after 60 min of reperfusion, P = 0.001 in IRG-SS in relation to baseline values), which was correlated with the highest degree of pulmonary edema in morphometric analysis (0.16 ± 0.06 in IRG-SS vs 0.09 ± 0.04 in IRG, P = 0.03 between groups). There was also a smaller ventilatory compensation of metabolic acidosis after the reperfusion. We conclude that infusion of normal saline worsened the gas exchange induced by pulmonary reperfusion injury in this experimental model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several factors are associated with bronchopulmonary dysplasia. Among them, hyperoxia and lung immaturity are considered to be fundamental; however, the effect of malnutrition is unknown. Our objective was to evaluate the effects of 7 days of postnatal malnutrition and hyperoxia on lung weight, volume, water content, and pulmonary morphometry of premature rabbits. After c-section, 28-day-old New Zealand white rabbits were randomized into four groups: control diet and room air (CA, N = 17), control diet and ≥95% O2 (CH, N = 17), malnutrition and room air (MA, N = 18), and malnutrition and ≥95% O2 (MH, N = 18). Malnutrition was defined as a 30% reduction of all the nutrients provided in the control diet. Treatments were maintained for 7 days, after which histological and morphometric analyses were conducted. Lung slices were stained with hematoxylin-eosin, modified orcein-resorcin or picrosirius. The results of morphometric analysis indicated that postnatal malnutrition decreased lung weight (CA: 0.83 ± 0.19; CH: 0.96 ± 0.28; MA: 0.65 ± 0.17; MH: 0.79 ± 0.22 g) and water content, as well as the number of alveoli (CA: 12.43 ± 3.07; CH: 8.85 ± 1.46; MA: 7.33 ± 0.88; MH: 6.36 ± 1.53 x 10-3/mm) and elastic and collagen fibers. Hyperoxia reduced the number of alveoli and increased septal thickening and the mean linear intercept. The reduction of alveolar number, collagen and elastic fibers was intensified when malnutrition and hyperoxia were associated. These data suggest that dietary restriction enhances the magnitude of hyperoxia-induced alveolar growth arrest and lung parenchymal remodeling. It is interesting to consider the important influence of postnatal nutrition upon lung development and bronchopulmonary dysplasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifteen symptomatic and seven asymptomatic dogs infected naturally with Leishmania chagasi were examined in order to identify the presence of parasites and changes in heart and lung. Histopathological, cytological, and immunohistochemical analyses were performed on samples of heart and lung tissues. An inflammatory reaction characterized by inflammatory mononuclear, perivascular and intermuscular infiltrates was observed in both symptomatic and asymptomatic animals on histopathological analysis of the heart. In the lung, there was thickening of the alveolar septa due to congestion, edema, inflammatory infiltrate, and fibroblast proliferation. A focal reaction was observed although a diffuse reaction was present in both groups. On cytological examination, heart and lung imprints revealed amastigotes in two symptomatic animals and heart imprints were found in 1 asymptomatic dog. Immunoperoxidase staining showed amastigotes in the lung and heart of only 1 of 6 symptomatic animals examined. Within the ethical principles and limits of this research, it can be inferred that the study of heart and lung alterations in canine visceral leishmaniasis is increasingly important for understanding the problem related to humans. Dogs with visceral leishmaniasis were a good experimental model, since infection was caused by the same agent and the animals developed clinical, pathological and immunological alterations similar to those observed in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiopulmonary exercise testing (CPET) plays an important role in the assessment of functional capacity in patients with interstitial lung disease. The aim of this study was to identify CPET measures that might be helpful in predicting the vital capacity and diffusion capacity outcomes of patients with thoracic sarcoidosis. A longitudinal study was conducted on 42 nonsmoking patients with thoracic sarcoidosis (median age = 46.5 years, 22 females). At the first evaluation, spirometry, the measurement of single-breath carbon monoxide diffusing capacity (D LCOsb) and CPET were performed. Five years later, the patients underwent a second evaluation consisting of spirometry and D LCOsb measurement. After 5 years, forced vital capacity (FVC)% and D LCOsb% had decreased significantly [95.5 (82-105) vs 87.5 (58-103) and 93.5 (79-103) vs 84.5 (44-102), respectively; P < 0.0001 for both]. In CPET, the peak oxygen uptake, maximum respiratory rate, breathing reserve, alveolar-arterial oxygen pressure gradient at peak exercise (P(A-a)O2), and Δ SpO2 values showed a strong correlation with the relative differences for FVC% and D LCOsb% (P < 0.0001 for all). P(A-a)O2 ≥22 mmHg and breathing reserve ≤40% were identified as significant independent variables for the decline in pulmonary function. Patients with thoracic sarcoidosis showed a significant reduction in FVC% and D LCOsb% after 5 years of follow-up. These data show that the outcome measures of CPET are predictors of the decline of pulmonary function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because the superficial lymphatics in the lungs are distributed in the subpleural, interlobular and peribroncovascular interstitium, lymphatic impairment may occur in the lungs of patients with idiopathic interstitial pneumonias (IIPs) and increase their severity. We investigated the distribution of lymphatics in different remodeling stages of IIPs by immunohistochemistry using the D2-40 antibody. Pulmonary tissue was obtained from 69 patients with acute interstitial pneumonia/diffuse alveolar damage (AIP/DAD, N = 24), cryptogenic organizing pneumonia/organizing pneumonia (COP/OP, N = 6), nonspecific interstitial pneumonia (NSIP/NSIP, N = 20), and idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP, N = 19). D2-40+ lymphatic in the lesions was quantitatively determined and associated with remodeling stage score. We observed an increase in the D2-40+ percent from DAD (6.66 ± 1.11) to UIP (23.45 ± 5.24, P = 0.008) with the advanced process of remodeling stage of the lesions. Kaplan-Meier survival curves showed a better survival for patients with higher lymphatic D2-40+ expression than 9.3%. Lymphatic impairment occurs in the lungs of IIPs and its severity increases according to remodeling stage. The results suggest that disruption of the superficial lymphatics may impair alveolar clearance, delay organ repair and cause severe disease progress mainly in patients with AIP/DAD. Therefore, lymphatic distribution may serve as a surrogate marker for the identification of patients at greatest risk for death due to IIPs.