950 resultados para Alternating
Resumo:
Benthic foraminiferal data from Ocean Drilling Program Site 1098 indicate significant changes in deep-water conditions of the Palmer Deep, western Antarctic Peninsula margin, throughout the Holocene (13 ka to present). The earliest Holocene represents a period of transition from the Last Glacial Maximum (LGM). Cold bottom waters, similar to saline shelf water (SSW), dominated the middle Holocene. The late Holocene in the Palmer Deep has been characterized by alternating dominance of circumpolar deep water (CDW) and saline shelf water. These changes have global oceanographic and climatic implications. We suggest that the middle Holocene bottom-water record, in the absence of circumpolar deep water on the western Antarctic Peninsula shelf, indicates high saline shelf water production and/or weakened circumpolar deep water production during the middle Holocene climatic optimum. The late Holocene benthic foraminiferal record indicates rapidly fluctuating sea-ice conditions and may indicate a teleconnection between the South Pacific and Southern Ocean, thus having implications related to the Southern Oscillation Index.
Resumo:
The evolution of planktonic foraminifera during the Late Cretaceous is marked in the Santonian by the disappearance of complex morphotypes (the marginotruncanids), and the contemporary increasing importance and diversification of another group of complex taxa, the globotruncanids. Upper Turonian to lower Campanian planktonic foraminiferal assemblages from Holes 762C and 763B (Ocean Drilling Program, Leg 122, Exmouth Plateau, 47°S palaeolatitude) were studied in detail to evaluate the compositional variations at the genus and species level based on the assumption that, in the Cretaceous oceans as in the modern, any faunal change was associated with changes in the characteristics and the degree of stability of the oceanic surface waters. Three major groups were recognised based on gross morphology, and following the assumption that Cretaceous planktonic foraminifera, although extinct, had life-history strategies comparable to those of modern planktonics: 1 - r-selected opportunists; 2 - k-selected specialists; 3 - r/k intermediate morphotypes which include all genera that display a range of trophic strategies in-between opportunist and specialist taxa. Although planktonic foraminiferal assemblages are characterised by a progressive appearance of complex taxa, this trend is discontinuous. Variation in number of species and specimens within genera has allowed recognition of five discrete intervals each of them reflecting different oceanic conditions based on fluctuations in diversity and abundance of the major morphotypes. Planktonic forms show cyclical fluctuations in diversity and abundance of cold (r-strategists) and warm taxa (k-strategists), perhaps representing alternating phases of unstable conditions (suggesting a weakly stratified upper water column in a mesotrophic environment), and well-stratified surface and near-surface waters (indicating a more oligotrophic environment). Interval 1, middle Turonian to early Coniacian in age, is dominated by the r/k intermediate morphotypes which alternate with r-strategists. These cyclical alternations are used to identify three additional subintervals. Interval 2, aged middle to late Coniacian, is characterised by the increasing number of species and relative abundance of k-strategists. After this maximum diversification the k-strategists show a progressive decrease reaching a minimum value in Interval 3 (early to late Santonian), which corresponds to the extinction of the genus Marginotruncana. In the Interval 4, latest Santonian in age, the k-strategists, represented mainly by the genera Globotruncana, increase again in diversity and abundance. The last Interval 5 (early Campanian) is dominated by juvenile globotruncanids and r-strategists which fluctuate in opposite phase. The positive peak (Interval 2) related to the maximum diversification of warm taxa (k-strategists) in the Coniacian seems to correspond to a warmer episode. It is followed by a marked decrease in the relative abundance of warm taxa (k-strategists crisis) with a minimum in the late Santonian (Interval 3), reflecting a decrease in temperature. Detailed analysis of faunal variations allows the Santonian faunal turnover to be ascribed to a cooling event strong enough to cause the extinction of the marginotruncanids.
Resumo:
Paleomagnetic measurements were made on 913 samples from 11 holes (626B, 626C, 627B, 628A, 630A, 631A, 632A, 632B, 633A, 634A, and 635B) drilled in and around the Bahamas carbonate bank during Ocean Drilling Program Leg 101. These samples displayed a wide range of magnetic intensities (from about 1.0 A/m to 1.6 * 10**- 6 A/m) and magnetic behavior. Most samples were weakly magnetized and had low mean destructive fields; however, sediments from sections of several holes were strongly magnetic with stable magnetizations. Magnetic-polarity interpretations were made on a Campanian unit from Hole 627B, a mid-Oligocene unit from Hole 628A, and a Plio-Pleistocene section from Hole 633A. Sediments in the upper parts of Holes 627B, 632A, and 633A have high magnetic intensities that decay 2 to 3 orders of magnitude over depths of 5 to 18 mbsf. The pattern of decline of the magnetism and the change in mean destructive fields and geochemical conditions in these holes are consistent with diagenetic dissolution of the magnetic minerals in a suboxic or anoxic-sulfidic environment. Paleolatitudes were calculated from samples from 16 time units in 7 holes and compared to the apparent polar wander path of the North American plate.
Resumo:
A preliminary composite depth section was generated for Site 704 by splicing Holes 704A and 704B together over the interval 0-350 mbsf (0-9 m.y.). High-resolution carbonate and opal data from the cores were correlated with the calcium and silicon signals from the GST logging run in Hole 704B to identify missing and disturbed intervals in the cores. Paleomagnetic and biostratigraphic age boundaries were then transferred to the composite depth records to obtain an age model, and sedimentation rates were calculated by linear interpolation between datums. Algorithms relating measured dry-bulk density to carbonate content and depth were generated to produce predicted values of density for every sample. Accumulation rates of bulk, carbonate, opal, and terrigenous sediment components were then computed to generate a record of sediment deposition on the Meteor Rise that has a resolution of better than 200,000 yr for the period from 8.6 to 1.0 m.y. From 8.6 to 2.5 m.y., bulk-accumulation rates on the Meteor Rise averaged less than 2 g/cm**2/1000 yr and were dominated by carbonate deposition. The first significant opal deposition (6.0 m.y.) punctuated a brief (less than 0.6 Ma) approach of the Polar Front Zone (PFZ) northward that heralded a period of increasing severity of periodic carbonate dissolution events (terrigenous maxima) that abruptly terminated at 4.8 m.y. (base of the Thvera Subchron), synchronous with the reflooding of the Mediterranean after the Messinian salinity crisis. From 4.8 to 2.5 m.y., carbonate again dominated deposition, and the PFZ was far south except during brief northward excursions bracketing 4.2-3.9, 3.3-2.9, and 2.8-2.7 m.y. At 2.5 m.y., all components of bulk-accumulation rates increased dramatically (up to 15 g/cm2/1000 yr), and by 2.4 m.y., a pattern of alternating, high-amplitude carbonate and opal cyclicity marked the initiation of rapid glacial to interglaci·l swings in the position of the PFZ, synchronous with the "onset" of major Northern Hemisphere glaciation. Both mass-accumulation rates and the amplitude of the cycles decreased by about 2 m.y., but opal accumulation rates remained high up through the base of the Jaramillo (0.98 m.y.). From 1.9 to 1 m.y., the record is characterized by moderate amplitude fluctuations in carbonate and opal. This record of opal accumulation rates is interpreted as a long-term "Polar Front Indicator" that monitors the advance and retreat of the opal-rich PFZ northward (southward) toward (away from) the Meteor Rise in the subantarctic sector of the South Atlantic Ocean. The timing of PFZ migrations in the subantarctic South Atlantic Ocean is remarkably similar to Pliocene-Pleistocene climate records deduced from benthic oxygen isotope records in the North Atlantic Ocean (Raymo et al., 1989, doi:10.1029/PA004i004p00413; Ruddiman et al., 1989, doi:10.1029/PA004i004p00353). These include northward migrations during "cold" intervals containing strong glacial isotope stages (2.4-2.3, 2.1-2.0, 1.95-1.55, 1.45-1.30 m.y. and at about 1.13 and 1.09 m.y.) and southward migrations during "warm" intervals containing weak glacial and/or strong interglacial stages (2.45-2.40, 2.30-2.10, 2.00-1.95, 1.52-1.45, 1.30-1.18, 1.11, and 1.06-0.93 m.y.). Although our preliminary composite record is not continuous (some stages are obviously missing), there is hope that future work will identify these missing intervals in the as yet incomplete Hole 704B and will extend this high-resolution Southern Hemisphere climate record back to 8.6 m.y.
Resumo:
During drilling at Sites 759, 760, and 761 of Leg 122 (Exmouth Plateau, northwest Australia), a thick section of Upper Triassic sediments was recovered. Paleomagnetic analyses were made on 398 samples from Holes 759B, 760A, 760B, and 761C. Progressive thermal demagnetization, alternating field demagnetization, or mixed treatment removed an initial unstable component and isolated a characteristic remanent magnetization which is of normal or reversed polarity. The magnetostratigraphic results allow us to propose a magnetic polarity sequence which extends from the upper Carnian to lower Rhaetian. This sequence reveals many more reversals than previously suggested from paleomagnetic studies. The magnetostratigraphic data also allow us to suggest correlations between Sites 759 and 760.
Resumo:
We investigated the magnetic and paleomagnetic properties of 77 basalt samples from Holes 482, 482C, 482D, 483, 483B, 485, and 485A in order to study the structure and development of the ocean's crust. During the course of this study, we measured the natural remanent magnetization, Jn, and its stability in an alternating magnetic field; the magnetic susceptibility, x; the saturation magnetization, Js; the saturation remanent magnetization, Jrs; the coercivity of maximum remanence, HCR; and the median destructive fields MDFn (for Jn) and MDFs for Jrs. A thermomagnetic analysis for Js and Jrs was also performed; these latter measurements were made on the same samples.
Resumo:
We conducted an integrated paleomagnetic and rock magnetic study on cores recovered from Ocean Drilling Program Sites 1276 and 1277 of the Newfoundland Basin. Stable components of magnetization are determined from Cretaceous-aged sedimentary and basement cores after detailed thermal and alternating-field demagnetization. Results from a series of rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier. In view of the normal polarity of magnetization and radiometric dates for the sills at Site 1276 (~98 and ~105 Ma, both within the Cretaceous Normal Superchron) and for a gabbro intrusion in peridotite at Site 1277 (~126 Ma, Chron M1), our results suggest that the primary magnetization of the Cretaceous rocks is likely retained in these rocks. The overall magnetic inclination of lithologic Unit 2 in Hole 1277A between 143 and 180 meters below seafloor is 38°, implying significant (~35° counterclockwise, viewed to the north) rotation of the basement around a horizontal axis parallel to the rift axis (010°). The paleomagnetic rotational estimates should help refine models for the tectonic evolution of the basement. The mean inclinations for Sites 1276 and 1277 rocks imply paleolatitudes of 30.3° ± 5.1° and 22.9° ± 12.0°, respectively, with the latter presumably influenced by tectonic rotation. These values are consistent with those inferred from the mid-Cretaceous reference poles for North America, suggesting that the inclination determinations are reliable and consistent with a drill site on a location in the North America plate since at least the mid-Cretaceous. The combined paleolatitude results from Leg 210 sites indicate that the Newfoundland Basin was some 1800 km south of its current position in the mid-Cretaceous. Assuming a constant rate of motion, the paleolatitude data would suggest a rate of 12.1 mm/yr for the interval from ~130 Ma (Site 1276 age) to present, and 19.6 mm/yr for the interval from 126 Ma (Site 1277 age) to recent. The paleolatitude and rotational data from this study are consistent with the possibility that Site 1276 may have passed over the Canary and Madeira hotspots that formed the Newfoundland Seamounts in the mid-Cretaceous.
Resumo:
We have conducted an integrated paleomagnetic and biostratigraphic study on the Cenozoic sedimentary sequences of the southern Iberia Abyssal Plain margin, focusing on Ocean Drilling Program (ODP) Sites 897, 898, 900, 1067, 1068, and 1069. Reliable magnetostratigraphy from these six sites is presented in this paper. Sedimentary sections from Holes 897C, 898A, 900A, 1067A, 1068A, and 1069A have recorded a pattern of magnetic polarity reversals that correlates well with the known magnetic polarity timescale for the past 56 m.y. The polarity patterns from the Pliocene-Pleistocene turbidite sequence at the Leg 149 sites show that a reliable magnetostratigraphy can be established from the early Pliocene to Holocene, including the Gilbert/Gauss boundary (3.58 m.y.) through the Matuyama/Brunhes boundary (0.78 m.y.). On the basis of distinct intervals of magnetic reversal zones and biostratigraphic datums, five magnetozones (C21n-C25n) can be recognized at the three Leg 173 sites that range from middle Eocene to late Paleocene in age. The magnetostratigraphy of the Iberia sections allows the determination of sedimentation rates and better constraints on the timing of deformation. Combining the age and average inclination information available from the magnetostratigraphy, we also present paleolatitudes vs. time for the Iberia drill sites.
Resumo:
The paleomagnetic and rock magnetic properties of 51 Jurassic basalts from Ocean Drilling Program (ODP) Hole 801C have been examined. Magnetic properties vary with lithologic composition; alkalic rocks and hydrothermally-altered tholeiites are much weaker in intensity and generally contain higher coercivity magnetic components than the older and less-altered tholeiites at the base of the hole. For the entire column, the Jurassic basalts have an average initial natural remanent magnetization (NRM) intensity of approximately 1.24 A/m and average median destructive fields (MDF) of 8.31 mT. These values and the mean Koenigsberger ratio of 1.7 are very similar to results obtained for Jurassic basalts from the Atlantic (DSDP Leg 76). The similarities suggest that the basalts of both sites and their remanence characteristics are representative of Jurassic oceanic crust. The most profound discovery in these samples was the presence of 5 inclination zones, each showing consistent positive (or negative) polarity opposite the overlying and underlying polarity bands. We interpret these to represent a record of change in polarity of the EarthÆs magnetic field and, because of the large number over such a short interval (60 m) of crust, we assert that the rapid change in polarity during the Jurassic is the probable reason behind the origin of the Jurassic Quiet Zone.
Resumo:
The mineralogical and geochemical study of samples from Sites 642, 643, and 644 enabled us to reconstruct several aspects of the Cenozoic paleoenvironmental evolution (namely volcanism, climate, hydrology) south of the Norwegian Sea and correlate it with evolution trends in the northeast Atlantic. Weathering products of early Paleogene volcanic material at Rockall Plateau, over the Faeroe-Iceland Ridge and the Voring Plateau indicate a hot and moist climate (lateritic environment) existed then. From Eocene to Oligocene, mineralogical assemblages of terrigenous sediments suggest the existence of a warm but somewhat less moist climate at that time than during the early Paleogene. At the beginning of early Miocene, climatic conditions were warm and damp. The large amounts of amorphous silica in Miocene sediment could indicate an important flux of silica from the continent then, or suggest the formation of upwelling. Uppermost lower Miocene and middle to upper Miocene clay assemblages suggest progressive cooling of the climate from warm to temperate at that time. At the end of early Miocene, hydrological exchanges between the North Atlantic and the Norwegian Sea became intense and gave rise to an important change in the mineralogy of deposits. From Pliocene to Pleistocene, the variable mineralogy of deposits reflects alternating glacial/interglacial climatic episodes, a phenomenon observed throughout the North Atlantic.