997 resultados para Airborne laser scanners
Resumo:
A new procedure to find the limiting range of the photomultiplier linear response of a low-cost, digital oscilloscope-based time-resolved laser-induced luminescence spectrometer (TRLS), is presented. A systematic investigation on the instrument response function with different signal input terminations, and the relationship between the luminescence intensity reaching the photomultiplier and the measured decay time are described. These investigations establish that setting the maximum intensity of the luminescence signal below 0.3V guarantees, for signal input terminations equal or higher than 99.7 ohm, a linear photomultiplier response.
Resumo:
Quickremovalofbiosolidsinaquaculturefacilities,andspeciallyinrecirculatingaquaculturesystems(RAS),isoneofthemostimportantstepinwastemanagement.Sedimentationdynamicsofbiosolidsinanaquaculturetankwilldeterminetheiraccumulationatthebottomofthetank.
Resumo:
Previous results concerning radiative emission under laser irradiation of silicon nanopowder are reinterpreted in terms of thermal emission. A model is developed that considers the particles in the powder as independent, so under vacuum the only dissipation mechanism is thermal radiation. The supralinear dependence observed between the intensity of the emitted radiation and laser power is predicted by the model, as is the exponential quenching when the gas pressure around the sample increases. The analysis allows us to determine the sample temperature. The local heating of the sample has been assessed independently by the position of the transverse optical Raman mode. Finally, it is suggested that the photoluminescence observed in porous silicon and similar materials could, in some cases, be blackbody radiation
Resumo:
The spectroscopic behavior of thioxanthone and benzil (diphenylethanedione or dibenzoyl) in the ionic liquid [bmim.PF6] has been investigated employing the laser flash photolysis technique. Triplet-triplet absorption spectra for these carbonyl compounds in [bmim.PF6] are similar to those observed in organic solvents. The triplet lifetime for thioxanthone in desogygenated samples is very long (71 μs), whereas in oxygen-saturated solution is 500 ns, which indicates the low oxygen solubility in this solvent. For benzil, lifetimes of 10 μs in [bmim.PF6] and 3.8 μs in acetonitrile were obtained. The decay for triplet thioxanthone and benzil follows a clear first order kinetics in [bmim.PF6], from which one can conclude that triplet-triplet annihilation is not an important decay process in this solvent.
Resumo:
Fusarium head blight (FHB) is a disease of increasing concern in the production of wheat (Triticum aestivum). This work studied some of the factors affecting the density of airborne Gibberella zeae inoculum. Spore samplers were placed at the edge of a field in order to observe spore deposition over a period of 45 days and nights in September and October, the period that coincides with wheat flowering. Gibberella zeae colonies were counted for each period and values transformed to relative density. A stepwise regression procedure was used to identify weather variables helpful in predicting spore cloud density. In general, a predominant night-time spore deposition was observed. Precipitation and daily mean relative humidity over 90% were the factors most hightly associated with peak events of spores in the air. Models for predicting spore cloud density simulated reasonably well with the fluctuation of airborne propagules during both night and day, with potential to be integrated into an FHB risk model framework.
Resumo:
Neste trabalho descreve-se a tecnologia envolvida na fabricação de um detector piroelétrico para aplicações na determinação da energia de feixe de lasers pulsados ou CW (onda contínua) modulados, utilizando-se do polímero Polifluoreto de Vinilideno PVDF. Os dados experimentais revelam que o detector tem resposta linear com a energia aplicada para o intervalo compreendido entre 0,4 a 6,8 mili-Joule/pulse para pulsos com largura temporal de 8,3 milissegundos.
Resumo:
Foram realizados estudos para avaliar a microestrutura, a dureza e a resistência à corrosão do titânio comercialmente puro-Ti c.p. soldado por laser e utilizado na confecção de prótese sobre implantes. Verificou-se que na soldagem a laser a microestrutura apresentou três regiões distintas: o cordão de solda, a zona afetada pelo calor - ZAC e o metal base. O Ti c.p. possui microestrutura granular, a microestrutura do cordão de solda é mais refinada e de maior dureza do que o metal base. A ZAC obtida por este processo de soldagem foi relativamente pequena quando comparada com o processo de soldagem por brasagem. Os ensaios eletroquímicos mostraram que a região da solda apresentou menor resistência à corrosão em meio de NaCl 0,15 molL-1 à temperatura ambiente.
Resumo:
Investigou-se o comportamento de juntas soldadas de uma liga a base de ouro utilizada na confecção de próteses odontológicas sobre implantes antes e após ser submetida ao processo de soldagem a laser. Constatou-se que houve uma mudança estrutural na região da solda e esta apresentou uma microestrutura dendrítica refinada e o metal base uma microestrutura granular bifásica com maior dureza e presença de precipitados de Au. Os ensaios eletroquímicos, em meio aerado de NaCl 0,15 molL-1 à temperatura ambiente, que simula as condições do ambiente oral, demonstraram que a junta soldada apresentou melhor desempenho frente à corrosão quando comparada ao metal base; provavelmente devida a estrutura metalúrgica desta região.
Resumo:
Due to font problem on the tilte field the titlte of the thesis is corrected here. The title of the thesis is: Superconducting properties and their enhancement in ReBa2Cu3O7-delta (RE = Y and Gd) films prepared by pulsed laser deposition
Resumo:
Cutting of thick section stainless steel and mild steel, and medium section aluminium using the high power ytterbium fibre laser has been experimentally investigated in this study. Theoretical models of the laser power requirement for cutting of a metal workpiece and the melt removal rate were also developed. The calculated laser power requirement was correlated to the laser power used for the cutting of 10 mm stainless steel workpiece and 15 mm mild steel workpiece using the ytterbium fibre laser and the CO2 laser. Nitrogen assist gas was used for cutting of stainless steel and oxygen was used for mild steel cutting. It was found that the incident laser power required for cutting at a given cutting speed was lower for fibre laser cutting than for CO2 laser cutting indicating a higher absorptivity of the fibre laser beam by the workpiece and higher melting efficiency for the fibre laser beam than for the CO2 laser beam. The difficulty in achieving an efficient melt removal during high speed cutting of the 15 mmmild steel workpiece with oxygen assist gas using the ytterbium fibre laser can be attributed to the high melting efficiency of the ytterbium fibre laser. The calculated melt flow velocity and melt film thickness correlated well with the location of the boundary layer separation point on the 10 mm stainless steel cut edges. An increase in the melt film thickness caused by deceleration of the melt particles in the boundary layer by the viscous shear forces results in the flow separation. The melt flow velocity increases with an increase in assist gas pressure and cut kerf width resulting in a reduction in the melt film thickness and the boundary layer separation point moves closer to the bottom cut edge. The cut edge quality was examined by visual inspection of the cut samples and measurement of the cut kerf width, boundary layer separation point, cut edge squareness (perpendicularity) deviation, and cut edge surface roughness as output quality factors. Different regions of cut edge quality in 10 mm stainless steel and 4 mm aluminium workpieces were defined for different combinations of cutting speed and laserpower.Optimization of processing parameters for a high cut edge quality in 10 mmstainless steel was demonstrated
Resumo:
The aim of the study was to create an easily upgradable product costing model for laser welded hollow core steel panels to help in pricing decisions. The theory section includes a literature review to identify traditional and modern cost accounting methodologies, which are used by manufacturing companies. The theory section also presents the basics of steel panel structures and their manufacturing methods and manufacturing costs based on previous research. Activity-Based costing turned out to be the most appropriate methodology for the costing model because of wide product variations. Activity analysis and the determination of cost drivers based on observations and interviews were the key steps in the creation of the model. The created model was used to test how panel parameters affect the costs caused by the main manufacturing stages and materials. By comparing cost structures, it was possible to find the panel types that are the most economic and uneconomic to manufacture. A sensitivity analysis proved that the model gives sufficiently reliable cost information to support pricing decisions. More reliable cost information could be achieved by determining the cost drivers more accurately. Alternative methods for manufacturing the cores were compared with the model. The comparison proved that roll forming can be more advantageous and flexible than press brake bending. However, more extensive research showed that roll forming is possible only when the cores are designed to be manufactured by roll forming. Due to that fact, when new panels are designed consideration should be given to the possibility of using roll forming.
Resumo:
Asian soybean rust, caused by the fungus Phakopsora pachyrhizi, was reported at epidemic levels in 2003/2004 and is the main soybean disease in Brazil. The aim of this study was to investigate the spread of Asian soybean rust and to quantify airborne urediniospores in the region of Campo Mourão, Paraná State, Brazil. Three experiments were conducted under field conditions during the 2007/08 and 2008/09 crop seasons. Using the disease gradient method, provided by the application of increasing levels of the fungicide tebuconazole, four Asian soybean rust epidemics at different intensities were obtained in each experiment. To quantify the urediniospores, weathercock-type spore collectors were installed during and between the two crop seasons. Disease progress curves were plotted for each epidemic, and maximum severity was estimated. The curves were fit to the logistic model, which provided higher coefficients of determination and more randomly distributed residuals plotted over time. Analyses of the area under the disease progress curve showed that the largest epidemics occurred in the 2007/2008 crop season and that the progress rates were higher for severity, even among plants protected with the fungicide. The number of urediniospores collected in the air was related to the presence of soybean plants in the cultivated crops. The quantity of urediniospores was also positively correlated to the disease severity and incidence, as well as to cumulative rainfall and favorable days for P. Pachyrhizi infection.
Resumo:
The mechanical properties of aluminium alloys are strongly influenced by the alloying elements and their concentration. In the case of aluminium alloy EN AW-6060 the main alloying elements are magnesium and silicon. The first goal of this thesis was to determine stability, repeatability and sensitivity as figures of merit of the in-situ melt identification technique. In this study the emissions from the laser welding process were monitored with a spectrometer. With the information produced by the spectrometer, quantitative analysis was conducted to determine the figures of merit. The quantitative analysis concentrated on magnesium and aluminium emissions and their relation. The results showed that the stability of absolute intensities was low, but the normalized magnesium emissions were quite stable. The repeatability of monitoring magnesium emissions was high (about 90 %). Sensitivity of the in-situ melt identification technique was also high. As small as 0.5 % change in magnesium content was detected by the spectrometer. The second goal of this study was to determine the loss of mass during deep penetration laser welding. The amount of magnesium in the material was measured before and after laser welding to determine the loss of magnesium. This study was conducted for aluminium alloy with nominal magnesium content of 0-10 % and for standard material EN AW-6060 that was welded with filler wire AlMg5. It was found that while the magnesium concentration in the material changed, the loss of magnesium remained fairly even. Also by feeding filler wire, the behaviour was similar. Thirdly, the reason why silicon had not been detected in the emission spectrum needed to be explained. Literature research showed that the amount of energy required for silicon to excite is considerably higher compared to magnesium. The energy input in the used welding process is insufficient to excite the silicon atoms.