927 resultados para Adverse Weather
Resumo:
Multibeam data were measured during R/V Polarstern cruise ANT-XIX/5 along track lines of approximately 4000 NM total length in the Scotia Sea. Data were achieved along the Scotia Arc from Burdwood Bank to King George Island. A multibeam box survey was conducted at the southern part of the Discovery Rise, located at 50°55'S / 35°30'W and covering an area of 90 x 15 NM. A bathymetric survey of 25 x 60 NM was carried out at the eastern part of the South Shetland Trench and its intersection with the Shackleton Fracture Zone, continuing multibeam data from former expeditions. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle. The refraction correction was achieved utilizing the system's own cross fan calibration. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were collected during R/V Polarstern cruise ANT-XXVI/2 along track lines of about 9,270 NM total length along transits, survey profiles and during stationary work. Departing in Punta Arenas the ship headed for its first main working area, the Eltanin Impact Area. In the following the ship's track crosses Pacific Antarctic Ridge and the corresponding fracture zones several times before arriving in Wellington. The refraction correction was achieved utilizing CTD profiles or by the system's own cross fan calibration. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Global climate change threatens coral growth and reef ecosystem health via ocean warming and ocean acidification (OA). Whereas the negative impacts of these stressors are increasingly well-documented, studies identifying pathways to resilience are still poorly understood. Heterotrophy has been shown to help corals experiencing decreases in growth due to either thermal or OA stress; however, the mechanism by which it mitigates these decreases remains unclear. This study tested the ability of coral heterotrophy to mitigate reductions in growth due to climate change stress in the critically endangered Caribbean coral Acropora cervicornis via changes in feeding rate and lipid content. Corals were either fed or unfed and exposed to elevated temperature (30°C), enriched pCO2 (800 ppm), or both (30°C/800 ppm) as compared to a control (26°C/390 ppm) for 8 weeks. Feeding rate and lipid content both increased in corals experiencing OA vs. present-day conditions, and were significantly correlated. Fed corals were able to maintain ambient growth rates at both elevated temperature and elevated CO2, while unfed corals experienced significant decreases in growth with respect to fed conspecifics. Our results show for the first time that a threatened coral species can buffer OA-reduced calcification by increasing feeding rates and lipid content.
Resumo:
Multibeam data were measured during R/V Polarstern cruise ANT-XIX/2 along track lines of about 6,100 NM total length along transits, survey profiles and during stationary work, mainly in the Weddell Sea. A multibeam survey was conducted in the eastern Weddell Sea at a potential earthquake area, located east of Fimbul Canyon. The tracks complemented data from former expeditions and extended the surveyed area to 60 by 80 NM. Data were achieved during the transit to the eastern Weddell Sea and by several wide spaced track lines at the continental margin east of Antarctic Peninsula. Between 66°30'S and 67°S a systematic survey of about 35 by 40 NM was carried out at a slump area. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle. The refraction correction was achieved utilizing the system's own cross fan calibration. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Multibeam data were measured during R/V Polarstern cruise ANT-XXII/2 along track lines of approximately 6800 NM total length during transits and the Ice Station POLarstern (ISPOL) experiment. Data were achieved during the transit from Cape Town via Bouvet Island towards Antarctic Peninsula for three weeks, crossing Agulhas Ridge, Agulhas Basin and Mid-Atlantic Ridge, and during the transit to Cape Town via South Georgia for two weeks. During the ISPOL station, data were gained while the vessel was drifting for five weeks anchored to an ice floe in the south-western Weddell Sea, starting at 68°13'S/54°47'W. The multibeam sonar system Hydrosweep DS-2 was operated using 59 beams and 90° aperture angle. The refraction correction was achieved using CTD profiles or utilizing the system's own cross fan calibration. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.