993 resultados para Adam Wibby
Resumo:
Bone strain plays a major role as the activation signal for the bone (re)modeling process, which is vital for keeping bones healthy. Maintaining high bone mineral density reduces the chances of fracture in the event of an accident. Numerous studies have shown that bones can be strengthened with physical exercise. Several hypotheses have asserted that a stronger osteogenic (bone producing) effect results from dynamic exercise than from static exercise. These previous studies are based on short-term empirical research, which provide the motivation for justifying the experimental results with a solid mathematical background. The computer simulation techniques utilized in this work allow for non-invasive bone strain estimation during physical activity at any bone site within the human skeleton. All models presented in the study are threedimensional and actuated by muscle models to replicate the real conditions accurately. The objective of this work is to determine and present loading-induced bone strain values resulting from physical activity. It includes a comparison of strain resulting from four different gym exercises (knee flexion, knee extension, leg press, and squat) and walking, with the results reported for walking and jogging obtained from in-vivo measurements described in the literature. The objective is realized primarily by carrying out flexible multibody dynamics computer simulations. The dissertation combines the knowledge of finite element analysis and multibody simulations with experimental data and information available from medical field literature. Measured subject-specific motion data was coupled with forward dynamics simulation to provide natural skeletal movement. Bone geometries were defined using a reverse engineering approach based on medical imaging techniques. Both computed tomography and magnetic resonance imaging were utilized to explore modeling differences. The predicted tibia bone strains during walking show good agreement with invivo studies found in the literature. Strain measurements were not available for gym exercises; therefore, the strain results could not be validated. However, the values seem reasonable when compared to available walking and running invivo strain measurements. The results can be used for exercise equipment design aimed at strengthening the bones as well as the muscles during workout. Clinical applications in post fracture recovery exercising programs could also be the target. In addition, the methodology introduced in this study, can be applied to investigate the effect of weightlessness on astronauts, who often suffer bone loss after long time spent in the outer space.
Resumo:
Abstract: Dermatosparaxis is an autosomal recessive disorder of connective tissue; the disorder is clinically characterized by skin fragility and hyperextensibility. Dermatosparaxis in White Dorper sheep is caused by a single nucleotide polymorphism (SNP) (c.421G>T) in the ADAM metalloproteinase with thrombospondin type 1 motif, 2 (ADAMTS2) gene. The aim of this study was to investigate the prevalence of this SNP in a White Dorper herd in São Paulo state, Brazil. In this study, we collected blood DNA samples from 303 White Dorper sheep and performed polymerase chain reaction to amplify the SNP region. The samples were sequenced to determine the presence of the SNP in the ADAMTS2 gene. The SNP prevalence in the studied population was 15.5%; this finding indicates that more effective control measures should be used to prevent the inheritance of SNP c.421G>T in the ADAMTS2 gene in Brazilian White Dorper herds.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Julkaisussa: Rélation du voyage d'Adam Olearius en Moscovie, Tartarie, et Perse. Vol I
Resumo:
Metalloproteinases and disintegrins are important components of most viperid and crotalid venoms. Large metalloproteinases referred to as MDC enzymes are composed of an N-terminal Metalloproteinase domain, a Disintegrin-like domain and a Cys-rich C-terminus. In contrast, disintegrins are small non-enzymatic RGD-containing cysteine-rich polypeptides. However, the disintegrin region of MDC enzymes bears a high degree of structural homology to that of the disintegrins, although it lacks the RGD motif. Despite these differences, both components share the property of being able to recognize integrin cell surface receptors and thereby to inhibit integrin-dependent cell reactions. Recently, several membrane-bound MDC enzymes, closely related to soluble venom MDC enzymes, have been described in mammalian cells. This group of membrane-anchored mammalian enzymes is also called the ADAM family of proteins due to the structure revealing A Disintegrin And Metalloproteinase domains. ADAMs are involved in the shedding of molecules from the cell surface, a property which is also shared by some venom MDC enzymes.
Resumo:
Kandidaatintyössä tutkittiin Adam Klodowskin tutkimuksessa käytetyn menetelmän soveltuvuutta 3D-tulostimen mekanismiin. Tutkimustyö liittyy RepRap-projektiin, jonka tavoitteena on valmistaa 3D-tulostin 3D-tulostetuista osista. Mekaniikasta oli luotu matemaattinen malli, jota tutkittiin simuloinnin avulla. Työssä toteutettiin täysin yksilöity sulautettu ohjausjärjestelmä kyseiselle mekanismille ja tutkittiin järjestelmän soveltuvuutta käytäntöön. Tavoitteena oli vähentää komponenttien lukumäärää ja pienentää laitteiston vaatimaa tilaa.
Resumo:
Invokaatio: B.C.D.
Resumo:
Arkit: A-B4.
Resumo:
Arkit: A-B4.