945 resultados para Active power reserver for frequency control
Resumo:
Este artículo presenta un resultado de investigación financiado con recursos propios en el que se expone un modelo en espacio de estados de un rectificador trifásico controlado active front end. Utilizando este modelo se deriva una ley de control orientado al voltaje (VOC), enfocado en el comportamiento como carga resistiva, factor de potencia unitario, el cual es probado mediante simulación usando el Toolbox SimPowerSystem en Simulink de Matlab®.
Resumo:
As the semiconductor industry struggles to maintain its momentum down the path following the Moore's Law, three dimensional integrated circuit (3D IC) technology has emerged as a promising solution to achieve higher integration density, better performance, and lower power consumption. However, despite its significant improvement in electrical performance, 3D IC presents several serious physical design challenges. In this dissertation, we investigate physical design methodologies for 3D ICs with primary focus on two areas: low power 3D clock tree design, and reliability degradation modeling and management. Clock trees are essential parts for digital system which dissipate a large amount of power due to high capacitive loads. The majority of existing 3D clock tree designs focus on minimizing the total wire length, which produces sub-optimal results for power optimization. In this dissertation, we formulate a 3D clock tree design flow which directly optimizes for clock power. Besides, we also investigate the design methodology for clock gating a 3D clock tree, which uses shutdown gates to selectively turn off unnecessary clock activities. Different from the common assumption in 2D ICs that shutdown gates are cheap thus can be applied at every clock node, shutdown gates in 3D ICs introduce additional control TSVs, which compete with clock TSVs for placement resources. We explore the design methodologies to produce the optimal allocation and placement for clock and control TSVs so that the clock power is minimized. We show that the proposed synthesis flow saves significant clock power while accounting for available TSV placement area. Vertical integration also brings new reliability challenges including TSV's electromigration (EM) and several other reliability loss mechanisms caused by TSV-induced stress. These reliability loss models involve complex inter-dependencies between electrical and thermal conditions, which have not been investigated in the past. In this dissertation we set up an electrical/thermal/reliability co-simulation framework to capture the transient of reliability loss in 3D ICs. We further derive and validate an analytical reliability objective function that can be integrated into the 3D placement design flow. The reliability aware placement scheme enables co-design and co-optimization of both the electrical and reliability property, thus improves both the circuit's performance and its lifetime. Our electrical/reliability co-design scheme avoids unnecessary design cycles or application of ad-hoc fixes that lead to sub-optimal performance. Vertical integration also enables stacking DRAM on top of CPU, providing high bandwidth and short latency. However, non-uniform voltage fluctuation and local thermal hotspot in CPU layers are coupled into DRAM layers, causing a non-uniform bit-cell leakage (thereby bit flip) distribution. We propose a performance-power-resilience simulation framework to capture DRAM soft error in 3D multi-core CPU systems. In addition, a dynamic resilience management (DRM) scheme is investigated, which adaptively tunes CPU's operating points to adjust DRAM's voltage noise and thermal condition during runtime. The DRM uses dynamic frequency scaling to achieve a resilience borrow-in strategy, which effectively enhances DRAM's resilience without sacrificing performance. The proposed physical design methodologies should act as important building blocks for 3D ICs and push 3D ICs toward mainstream acceptance in the near future.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. ^ The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. ^ The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.^
Resumo:
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled
Electric Vehicle Battery Charger: Wireless Power Transfer System Controlled by Magnetic Core Reactor
Resumo:
This paper presents a control process and frequency adjustment based on the magnetic core reactor for electric vehicle battery charger. Since few decades ago, there have been significant developments in technologies used in wireless power transfer systems, namely in battery charger. In the wireless power transfer systems is essential that the frequency of the primary circuit be equal to the frequency of the secondary circuit so there is the maximum energy transfer. The magnetic core reactor allows controlling the frequencies on both sides of the transmission and reception circuits. Also, the assembly diagrams and test results are presented.
Resumo:
In this thesis, a thorough investigation on acoustic noise control systems for realistic automotive scenarios is presented. The thesis is organized in two parts dealing with the main topics treated: Active Noise Control (ANC) systems and Virtual Microphone Technique (VMT), respectively. The technology of ANC allows to increase the driver's/passenger's comfort and safety exploiting the principle of mitigating the disturbing acoustic noise by the superposition of a secondary sound wave of equal amplitude but opposite phase. Performance analyses of both FeedForwrd (FF) and FeedBack (FB) ANC systems, in experimental scenarios, are presented. Since, environmental vibration noises within a car cabin are time-varying, most of the ANC solutions are adaptive. However, in this work, an effective fixed FB ANC system is proposed. Various ANC schemes are considered and compared with each other. In order to find the best possible ANC configuration which optimizes the performance in terms of disturbing noise attenuation, a thorough research of \gls{KPI}, system parameters and experimental setups design, is carried out. In the second part of this thesis, VMT, based on the estimation of specific acoustic channels, is investigated with the aim of generating a quiet acoustic zone around a confined area, e.g., the driver's ears. Performance analysis and comparison of various estimation approaches is presented. Several measurement campaigns were performed in order to acquire a sufficient duration and number of microphone signals in a significant variety of driving scenarios and employed cars. To do this, different experimental setups were designed and their performance compared. Design guidelines are given to obtain good trade-off between accuracy performance and equipment costs. Finally, a preliminary analysis with an innovative approach based on Neural Networks (NNs) to improve the current state of the art in microphone virtualization is proposed.
Resumo:
High Energy efficiency and high performance are the key regiments for Internet of Things (IoT) end-nodes. Exploiting cluster of multiple programmable processors has recently emerged as a suitable solution to address this challenge. However, one of the main bottlenecks for multi-core architectures is the instruction cache. While private caches fall into data replication and wasting area, fully shared caches lack scalability and form a bottleneck for the operating frequency. Hence we propose a hybrid solution where a larger shared cache (L1.5) is shared by multiple cores connected through a low-latency interconnect to small private caches (L1). However, it is still limited by large capacity miss with a small L1. Thus, we propose a sequential prefetch from L1 to L1.5 to improve the performance with little area overhead. Moreover, to cut the critical path for better timing, we optimized the core instruction fetch stage with non-blocking transfer by adopting a 4 x 32-bit ring buffer FIFO and adding a pipeline for the conditional branch. We present a detailed comparison of different instruction cache architectures' performance and energy efficiency recently proposed for Parallel Ultra-Low-Power clusters. On average, when executing a set of real-life IoT applications, our two-level cache improves the performance by up to 20% and loses 7% energy efficiency with respect to the private cache. Compared to a shared cache system, it improves performance by up to 17% and keeps the same energy efficiency. In the end, up to 20% timing (maximum frequency) improvement and software control enable the two-level instruction cache with prefetch adapt to various battery-powered usage cases to balance high performance and energy efficiency.
Resumo:
Power electronic circuits are moving towards higher switching frequencies, exploiting the capabilities of novel devices to shrink the dimension of passive components. This trend demands sensors capable enough to operate at such high frequencies. This thesis aims to demonstrate through experimental characterization, the broadband capability of a fully integrated CMOS X-Hall current sensor in current mode interfaced with a transimpedance amplifier (TIA), chip CH09, realized in CMOS technology for power electronics applications such as power converters. The system exploits a common-mode control system to operate the dual supply system, 5-V for the X-Hall probe and 1.2-V for the readout. The developed prototype achieves a maximum acquisition bandwidth of 12 MHz, a power consumption of 11.46 mW, resolution of 39 mArms, a sensitivity of 8 % /T, and a FoM of 569-MHz/A2mW, significantly higher than current state-of-the-art. Further enhancements were proposed to CH09 as a new chip CH100, aiming for accuracy levels prerequisite for a real-time power electronic application. The TIA was optimized for a wider bandwidth of 26.7 MHz with nearly 30% reduction of the integrated input referred noise of 26.69 nArms at the probe-AFE interface in the frequency band of DC-30 MHz, and a 10% improvement in the dynamic range. The expected input range is 5-A. The chip incorporates a dual sensing chain for differential sensing to overcome common mode interferences. A novel offset cancellation technique is proposed that would require switching of polarity of bias currents. Thermal gain drift was improved by a factor of 8 and will be digitally calibrated utilizing a new built-in temperature sensor with a post calibration measurement accuracy greater than 1%. The estimated power consumption of the entire system is 55.6 mW. Both prototypes have been implemented through a 90-nm microelectronic process from STMicroelectronics and occupy a silicon area of 2.4 mm2.
Resumo:
A robust and well-distributed backbone charging network is the priority to ensure widespread electrification of road transport, providing a driving experience similar to that of internal combustion engine vehicles. International standards set multiple technical targets for on-board and off-board electric vehicle chargers; output voltage levels, harmonic emissions, and isolation requirements strongly influence the design of power converters. Additionally, smart-grid services such as vehicle-to-grid and vehicle-to-vehicle require the implementation of bi-directional stages that inevitably increase system complexity and component count. To face these design challenges, the present thesis provides a rigorous analysis of four-leg and split-capacitor three-phase four-wire active front-end topologies focusing on the harmonic description under different modulation techniques and conditions. The resulting analytical formulation paves the way for converter performance improvements while maintaining regulatory constraints and technical requirements under control. Specifically, split-capacitor inverter current ripple was characterized as providing closed-form formulations valid for every sub-case ranging from synchronous to interleaved PWM. Outcomes are the base for a novel variable switching PWM technique capable of mediating harmonic content limitation and switching loss reduction. A similar analysis is proposed for four-leg inverters with a broad range of continuous and discontinuous PWM modulations. The general superiority of discontinuous PWM modulation in reducing switching losses and limiting harmonic emission was demonstrated. Developments are realized through a parametric description of the neutral wire inductor. Finally, a novel class of integrated isolated converter topologies is proposed aiming at the neutral wire delivery without employing extra switching components rather than the one already available in typical three-phase inverter and dual-active-bridge back-to-back configurations. The fourth leg was integrated inside the dual-active-bridge input bridge providing relevant component count savings. A novel modified single-phase-shift modulation technique was developed to ensure a seamless transition between working conditions like voltage level and power factor. Several simulations and experiments validate the outcomes.
Resumo:
Nowadays, there is a boom in the use of electrification. Electric vehicles are gaining interest worldwide due to various factors, including climate and environmental awareness. In this thesis, a step-down isolated power supply for electric tractors is investigated, specifically the phase-shifted full-bridge (PSFB) DC-DC with synchronous rectification and zero-voltage switching (ZVS). This converter was selected for its high-power capacity with high efficiency. A 3500 W PSFB converter with peak current control (PCCM) is designed and modeled in MATLAB. The input voltage range is from 550 V to 820 V and the output voltage range is limited to 9 V to 16 V with a maximum output current of 250 A. All components were commercially designed and selected, including magnetics for the high-frequency transformer and inductors, taking into account loss calculations. Zero voltage switching for the lagging leg is achieved at 13% to 100% load. The proven efficiency of the converter is around 90
Resumo:
This master's thesis investigates different aspects of Dual-Active-Bridge (DAB) Converter and extends aspects further to Multi-Active-Bridges (MAB). The thesis starts with an overview of the applications of the DAB and MAB and their importance. The analytical part of the thesis includes the derivation of the peak and RMS currents, which is required for finding the losses present in the system. The power converters, considered in this thesis are DAB, Triple-Active Bridge (TAB) and Quad-Active Bridge (QAB). All the theoretical calculations are compared with the simulation results from PLECS software for identifying the correctness of the reviewed and developed theory. The Hardware-in-the-Loop (HIL) simulation is conducted for checking the control operation in real-time with the help of the RT box from the Plexim. Additionally, as in real systems digital signal processor (DSP), system-on-chip or field programmable gate array is employed for the control of the power electronic systems, and the execution of the control in the real-time simulation (RTS) conducted is performed by DSP.
Resumo:
In the field of Power Electronics, several types of motor control systems have been developed using STM microcontroller and power boards. In both industrial power applications and domestic appliances, power electronic inverters are widely used. Inverters are used to control the torque, speed, and position of the rotor in AC motor drives. An inverter delivers constant-voltage and constant-frequency power in uninterruptible power sources. Because inverter power supplies have a high-power consumption and low transfer efficiency rate, a three-phase sine wave AC power supply was created using the embedded system STM32, which has low power consumption and efficient speed. It has the capacity of output frequency of 50 Hz and the RMS of line voltage. STM32 embedded based Inverter is a power supply that integrates, reduced, and optimized the power electronics application that require hardware system, software, and application solution, including power architecture, techniques, and tools, approaches capable of performance on devices and equipment. Power inverters are currently used and implemented in green energy power system with low energy system such as sensors or microcontroller to perform the operating function of motors and pumps. STM based power inverter is efficient, less cost and reliable. My thesis work was based on STM motor drives and control system which can be implemented in a gas analyser for operating the pumps and motors. It has been widely applied in various engineering sectors due to its ability to respond to adverse structural changes and improved structural reliability. The present research was designed to use STM Inverter board on low power MCU such as NUCLEO with some practical examples such as Blinking LED, and PWM. Then we have implemented a three phase Inverter model with Steval-IPM08B board, which converter single phase 230V AC input to three phase 380 V AC output, the output will be useful for operating the induction motor.
Resumo:
Wireless power transfer is becoming a crucial and demanding task in the IoT world. Despite the already known solutions exploiting a near-field powering approach, far-field WPT is definitely more challenging, and commercial applications are not available yet. This thesis proposes the recent frequency-diverse array technology as a potential candidate for realizing smart and reconfigurable far-field WPT solutions. In the first section of this work, an analysis on some FDA systems is performed, identifying the planar array with circular geometry as the most promising layout in terms of radiation properties. Then, a novel energy aware solution to handle the critical time variability of the FDA beam pattern is proposed. It consists on a time-control strategy through a triangular pulse, and it allows to achieve ad-hoc and real time WPT. Moreover, an essential frequency domain analysis of the radiating behaviour of a pulsed FDA system is presented. This study highlights the benefits of exploiting the intrinsic pulse harmonics for powering purposes, thus minimising the power loss. Later, the electromagnetic design of a radial FDA architecture is addressed. In this context, an exhaustive investigation on miniaturization techniques is carried out; the use of multiple shorting pins together with a meandered feeding network has been selected as a powerful solution to halve the original prototype dimension. Finally, accurate simulations of the designed radial FDA system are performed, and the obtained results are given.
Resumo:
Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences.