932 resultados para Active Site Probes


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The three-dimensional structure of murine mitochondrial carbonic anhydrase V has been determined and refined at 2.45-A resolution (crystallographic R factor = 0.187). Significant structural differences unique to the active site of carbonic anhydrase V are responsible for differences in the mechanism of catalytic proton transfer as compared with other carbonic anhydrase isozymes. In the prototypical isozyme, carbonic anhydrase II, catalytic proton transfer occurs via the shuttle group His-64; carbonic anhydrase V has Tyr-64, which is not an efficient proton shuttle due in part to the bulky adjacent side chain of Phe-65. Based on analysis of the structure of carbonic anhydrase V, we speculate that Tyr-131 may participate in proton transfer due to its proximity to zinc-bound solvent, its solvent accessibility, and its electrostatic environment in the protein structure. Finally, the design of isozyme-specific inhibitors is discussed in view of the complex between carbonic anhydrase V and acetazolamide, a transition-state analogue. Such inhibitors may be physiologically important in the regulation of blood glucose levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microsomal cytochrome P450c17 catalyzes both steroid 17 alpha-hydroxylase activity and scission of the C17-C20 steroid bond (17,20-lyase) on the same active site. Adrenal 17 alpha-hydroxylase activity is needed to produce cortisol throughout life, but 17,20-lyase activity appears to be controlled independently in a complex, age-dependent pattern. We show that human P450c17 is phosphorylated on serine and threonine residues by a cAMP-dependent protein kinase. Phosphorylation of P450c17 increases 17,20-lyase activity, while dephosphorylation virtually eliminates this activity. Hormonally regulated serine phosphorylation of human P450c17 suggests a possible mechanism for human adrenarche and may be a unifying etiologic link between the hyperandrogenism and insulin resistance that characterize the polycystic ovary syndrome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Production of infectious human immunodeficiency virus (HIV) requires proper polyprotein processing by the dimeric viral protease. The trans-dominant inhibitory activity of a defective protease monomer with the active site Asp-25 changed to Asn was measured by transient transfection. A proviral plasmid that included the drug-selectable Escherichia coli gpt gene was used to deliver the wild-type (wt) or mutant proteases to cultured cells. Coexpression of the wt proviral DNA (HIV-gpt) with increasing amounts of the mutant proviral DNA (HIV-gpt D25N) results in a concomitant decrease in proteolytic activity monitored by in vivo viral polyprotein processing. The viral particles resulting from inactivation of the protease were mostly immature, consisting predominantly of unprocessed p55gag and p160gag-pol polyproteins. In the presence of HIV-1 gp160 env, the number of secreted noninfectious particles correlated with the presence of increasing amounts of the defective protease. Greater than 97% reduction in infectivity was observed at a 1:6 ratio of wt to defective protease DNA. This provides an estimate of the level of inhibition required for effectively preventing virion processing. Stable expression of the defective protease in monkey cells reduced the yield of infectious particles from these cells by 90% upon transfection with the wt proviral DNA. These results show that defective subunits of the viral protease exert a trans-dominant inhibitory effect resulting from the formation of catalytically compromised heterodimers in vivo, ultimately yielding noninfectious viral particles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disulfide bond formation is catalyzed in the periplasm of Escherichia coli. This process involves at least two proteins: DsbA and DsbB. Recent evidence suggests that DsbA, a soluble periplasmic protein directly catalyzes disulfide bond formation in proteins, whereas DsbB, an inner membrane protein, is involved in the reoxidation of DsbA. Here we present direct evidence of an interaction between DsbA and DsbB. (Kishigami et al. [Kishigami, S., Kanaya, E., Kikuchi, M. & Ito, K. (1995) J. Biol. Chem. 270, 17072-17074] have described similar findings.) We isolated a dominant negative mutant of dsbA, dsbAd, where Cys-33 of the DsbA active site is changed to tyrosine. Both DsbAd and DsbA are able to form a mixed disulfide with DsbB, which may be an intermediate in the reoxidation of DsbA. This complex is more stable with DsbAd. The dominance can be suppressed by increasing the production of DsbB. By using mutants of DsbB in which one or two cysteines have been changed to alanine, we show that only Cys-104 is important for complex formation. Therefore, we suggest that in vivo, reduced DsbA forms a complex with DsbB in which Cys-30 of DsbA is disulfide-bonded to Cys-104 of DsbB. Cys-104 is rapidly replaced by Cys-33 of DsbA to generate the oxidized form of this protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Domain III of Pseudomonas aeruginosa exotoxin A catalyses the transfer of ADP-ribose from NAD to a modified histidine residue of elongation factor 2 in eukaryotic cells, thus inactivating elongation factor 2. This domain III is inactive in the intact toxin but is active in the isolated form. We report here the 2.5-A crystal structure of this isolated domain crystallized in the presence of NAD and compare it with the corresponding structure in the intact Pseudomonas aeruginosa exotoxin A. We observe a significant conformational difference in the active site region from Arg-458 to Asp-463. Contacts with part of domain II in the intact toxin prevent the adoption of the isolated domain conformation and provide a structural explanation for the observed inactivity. Additional electron density in the active site region corresponds to separate AMP and nicotinamide and indicates that the NAD has been hydrolyzed. The structure has been compared with the catalytic domain of the diphtheria toxin, which was crystallized with ApUp.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiolabel from [3H]myristic acid was incorporated by Neurospora crassa into the core catalytic subunit 1 of cytochrome c oxidase (EC 1.9.3.1), as indicated by immunoprecipitation. This modification of the subunit, which was specific for myristic acid, represents an uncommon type of myristoylation through an amide linkage at an internal lysine, rather than an N-terminal glycine. The [3H]myristate, which was chemically recovered from the radiolabeled subunit peptide, modified an invariant Lys-324, based upon analyses of proteolysis products. This myristoylated lysine is found within one of the predicted transmembrane helices of subunit 1 and could contribute to the environment of the active site of the enzyme. The myristate was identified by mass spectrometry as a component of mature subunit 1 of a catalytically active, purified enzyme. To our knowledge, fatty acylation of a mitochondrially synthesized inner-membrane protein has not been reported previously.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fructose-1,6-bisphosphatase (Fru-1,6-Pase; D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) requires two divalent metal ions to hydrolyze alpha-D-fructose 1,6-bisphosphate. Although not required for catalysis, monovalent cations modify the enzyme activity; K+ and Tl+ ions are activators, whereas Li+ ions are inhibitors. Their mechanisms of action are still unknown. We report here crystallographic structures of pig kidney Fru-1,6-Pase complexed with K+, Tl+, or both Tl+ and Li+. In the T form Fru-1,6-Pase complexed with the substrate analogue 2,5-anhydro-D-glucitol 1,6-bisphosphate (AhG-1,6-P2) and Tl+ or K+ ions, three Tl+ or K+ binding sites are found. Site 1 is defined by Glu-97, Asp-118, Asp-121, Glu-280, and a 1-phosphate oxygen of AhG-1,6-P2; site 2 is defined by Glu-97, Glu-98, Asp-118, and Leu-120. Finally, site 3 is defined by Arg-276, Glu-280, and the 1-phosphate group of AhG-1,6-P2. The Tl+ or K+ ions at sites 1 and 2 are very close to the positions previously identified for the divalent metal ions. Site 3 is specific to K+ or Tl+. In the divalent metal ion complexes, site 3 is occupied by the guanidinium group of Arg-276. These observations suggest that Tl+ or K+ ions can substitute for Arg-276 in the active site and polarize the 1-phosphate group, thus facilitating nucleophilic attack on the phosphorus center. In the T form complexed with both Tl+ and Li+ ions, Li+ replaces Tl+ at metal site 1. Inhibition by lithium very likely occurs as it binds to this site, thus retarding turnover or phosphate release. The present study provides a structural basis for a similar mechanism of inhibition for inositol monophosphatase, one of the potential targets of lithium ions in the treatment of manic depression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vitamin E in the reduced, alpha-tocopherol form shows very modest anticlotting activity. By contrast, vitamin E quinone is a potent anticoagulant. This observation may have significance for field trials in which vitamin E is observed to exhibit beneficial effects on ischemic heart disease and stroke. Vitamin E quinone is a potent inhibitor of the vitamin K-dependent carboxylase that controls blood clotting. A newly discovered mechanism for the inhibition requires attachment of the active site thiol groups of the carboxylase to one or more methyl groups on vitamin E quinone. The results from a series of model reactions support this interpretation of the anticlotting activity associated with vitamin E.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leukotriene A4 (LTA4) hydrolase [7E,9E,11Z,14Z)-(5S,6S)-5,6-epoxyicosa-7,9 ,11,14-tetraenoate hydrolase; EC 3.3.2.6] is a bifunctional zinc metalloenzyme which converts LTA4 into the chemotactic agent leukotriene B4 (LTB4). Suicide inactivation, a typical feature of LTA4 hydrolase/aminopeptidase, occurs via an irreversible, apparently mechanism-based, covalent binding of LTA4 to the protein in a 1:1 stoichiometry. Differential lysine-specific peptide mapping of unmodified and suicide-inactivated LTA4 hydrolase has been used to identify a henicosapeptide, encompassing the amino acid residues 365-385 of human LTA4 hydrolase, which is involved in the binding of LTA4, LTA4 methyl ester, and LTA4 ethyl ester to the native enzyme. A modified form of this peptide, generated by lysine-specific digestion of LTA4 hydrolase inactivated by LTA4 ethyl ester, could be isolated for complete Edman degradation. The sequence analysis revealed a gap at position 14, which shows that binding of the leukotriene epoxide had occurred via Tyr-378 in LTA4 hydrolase. Inactivation of the epoxide hydrolase and the aminopeptidase activity was accompanied by a proportionate modification of the peptide. Furthermore, both enzyme inactivation and peptide modification could be prevented by preincubation of LTA4 hydrolase with the competitive inhibitor bestatin, which demonstrates that the henicosapeptide contains functional elements of the active site(s). It may now be possible to clarify the molecular mechanisms underlying suicide inactivation and epoxide hydrolysis by site-directed mutagenesis combined with structural analysis of the lipid molecule, covalently bound to the peptide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For three decades, mammalian paraoxonase (A-esterase, aromatic esterase, arylesterase; PON, EC 3.1.8.1) has been thought to be a cysteine esterase demonstrating structural and mechanistic homologies with the serine esterases (cholinesterases and carboxyesterases). Human, mouse, and rabbit PONs each contain only three cysteine residues, and their positions within PON have been conserved. In purified human PON, residues Cys-41 and Cys-352 form an intramolecular disulfide bond and neither could function as an active-center cysteine. Highly purified, enzymatically active PON contains a single titratable sulfhydryl group. Thus, Cys-283 is the only probable candidate for an active-center cysteine. Through site-directed mutagenesis of the human cDNA, Cys-283 was replaced with either serine (C283S) or alanine (C283A). The expressed C283 (wild-type) enzyme was inactivated by para-hydroxymercuribenzoate, but the C283S and C283A mutant enzymes were not inactivated. C283A and C283S mutant enzymes retained both paraoxonase and arylesterase activities, and the Km values for paraoxon and phenyl acetate were similar to those of the wild type. Clearly, residue Cys-283 is free in active PON, but a free sulfhydryl group is not required for either paraoxonase or arylesterase activities. Consequently, it is necessary to examine other models for the active-site structure and catalytic mechanism of PON.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacteriophage T7 DNA polymerase efficiently incorporates a chain-terminating dideoxynucleotide into DNA, in contrast to the DNA polymerases from Escherichia coli and Thermus aquaticus. The molecular basis for this difference has been determined by constructing active site hybrids of these polymerases. A single hydroxyl group on the polypeptide chain is critical for selectivity. Replacing tyrosine-526 of T7 DNA polymerase with phenylalanine increases discrimination against the four dideoxynucleotides by > 2000-fold, while replacing the phenylalanine at the homologous position in E. coli DNA polymerase I (position 762) or T. aquaticus DNA polymerase (position 667) with tyrosine decreases discrimination against the four dideoxynucleotides 250- to 8000-fold. These mutations allow the engineering of new DNA polymerases with enhanced properties for use in DNA sequence analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Binding and signaling proteins based on Escherichia coli alkaline phosphatase (AP; EC 3.1.3.1) were designed for the detection of antibodies. Hybrid proteins were constructed by using wild-type AP and point mutants of AP [Asp-101 --> Ser (D101S) and Asp-153 --> Gly (D153G)]. The binding function of the hybrid proteins is provided by a peptide epitope inserted between amino acids 407 and 408 in AP. Binding of anti-epitope antibodies to the hybrid proteins modulates the enzyme activity of the hybrids; upon antibody binding, enzyme activity can increase to as much as 300% of the level of activity in the absence of antibody or can decrease as much as 40%, depending on the presence or absence of the point mutations in AP. The fact that modulation is altered from inhibition to activation by single amino acid changes in the active site of AP suggests that the mechanism for modulation is due to structural alterations upon antibody binding. Modulation is a general phenomenon. The properties of the system are demonstrated by using two epitopes, one from the V3 loop of human immunodeficiency virus type 1 gp120 protein and one from hepatitis C virus core protein, and corresponding monoclonal antibodies. The trend of modulation is consistent for all hybrids; those in wild-type AP are inhibited by antibody, while those in the AP mutants are activated by antibody. This demonstrates that modulation of enzyme activity of the AP-epitope hybrid proteins is not specific to either a particular epitope sequence or a particular antibody-epitope combination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dual-specific protein-tyrosine phosphatases have the common active-site sequence motif HCXXGXXRS(T). The role of the conserved hydroxyl was investigated by changing serine-131 to an alanine (S131A) in the dual-specific protein-tyrosine phosphatase VHR. The pH profile of the kcat/Km value for the S131A mutant is indistinguishable from that of the native enzyme. In contrast, the kcat value for S131A mutant is 100-fold lower than that for the native enzyme, and the shape of the pH profile was perturbed from bell-shaped in the native enzyme to a pH-independent curve over the pH range 4.5-9.0. This evidence, along with results from a previous study, suggests that the S131A mutation alters the rate-limiting step in the catalytic mechanism. Formation of a phosphoenzyme intermediate appears to be rate-limiting with the native enzyme, whereas in the S131A mutant breakdown of the intermediate is rate-limiting. This was confirmed by the appearance of a burst of p-nitrophenol formation when p-nitrophenyl phosphate rapidly reacted with the S131A enzyme in a stopped-flow spectrophotometer. Loss of this hydroxyl group at the active site dramatically diminished the ability of the enzyme to hydrolyze the thiol-phosphate intermediate without exerting any significant change in the steps leading to and including the formation of the intermediate. Consistent with rate-limiting intermediate formation in the native enzyme, the rate of burst in the S131A mutant was 1.5 s-1, which agrees well with the kcat value of 5 s-1 observed for native enzyme. The amplitude of the burst was stoichiometric with final enzyme concentration, and the slow linear rate (0.06 s-1) of p-nitrophenol formation after the burst was in agreement with the steady-state determined value of kcat (0.055 s-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Five different clones encoding thioredoxin homologues were isolated from Arabidopsis thaliana cDNA libraries. On the basis of the sequences they encode divergent proteins, but all belong to the cytoplasmic thioredoxins h previously described in higher plants. The five proteins obtained by overexpressing the coding sequences in Escherichia coli present typical thioredoxin activities (NADP(+)-malate dehydrogenase activation and reduction by Arabidopsis thioredoxin reductase) despite the presence of a variant active site, Trp-Cys-Pro-Pro-Cys, in three proteins in place of the canonical Trp-Cys-Gly-Pro-Cys sequence described for thioredoxins in prokaryotes and eukaryotes. Southern blots show that each cDNA is encoded by a single gene but suggest the presence of additional related sequences in the Arabidopsis genome. This very complex diversity of thioredoxins h is probably common to all higher plants, since the Arabidopsis sequences appear to have diverged very early, at the beginning of plant speciation. This diversity allows the transduction of a redox signal into multiple pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fundamental catalytic principle for protein enzymes in the use of binding interactions away from the site of chemical transformation for catalysis. We have compared the binding and reactivity of a series of oligonucleotide substrates and products of the Tetrahymena ribozyme, which catalyzes a site-specific phosphodiester cleavage reaction: CCCUCUpA+G<-->CCCUCU-OH+GpA. The results suggest that this RNA enzyme, like protein enzymes, can utilize binding interactions to achieve substantial catalysis via entropic fixation and substrate destabilization. The stronger binding of the all-ribose oligonucleotide product compared to an analog with a terminal 3' deoxyribose residue gives an effective concentration of 2200 M for the 3' hydroxyl group, a value approaching those obtained with protein enzymes and suggesting the presence of a structurally well defined active site capable of precise positioning. The stabilization from tertiary binding interactions is 40-fold less for the oligonucleotide substrate than the oligonucleotide product, despite the presence of the reactive phosphoryl group in the substrate. This destabilization is accounted for by a model in which tertiary interactions away from the site of bond cleavage position the electron-deficient 3' bridging phosphoryl oxygen of the oligonucleotide substrate next to an electropositive Mg ion. As the phosphodiester bond breaks and this 3' oxygen atom develops a negative charge in the transition state, the weak interaction of the substrate with Mg2+ becomes strong. These strategies of "substrate destabilization" and "transition state stabilization" provide estimated rate enhancements of approximately 280- and approximately 60-fold, respectively. Analogous substrate destabilization by a metal ion or hydrogen bond donor may be used more generally by RNA and protein enzymes catalyzing reactions of phosphate esters.