983 resultados para Acoustic sensing
Resumo:
Using data collected simultaneously from a trawl and a hydrophone, we found that temporal and spatial trends in densities of juvenile Atlantic croaker (Micropogonias undulatus) in the Neuse River estuary in North Carolina can be identified by monitoring their sound production. Multivariate analysis of covariance (MA NCOVA) revealed that catch per unit of effort (CPUE) of Atlantic croaker had a significant relationship with the dependent variables of sound level and peak frequency of Atlantic croaker calls. Tests of between-subject correspondence failed to detect relationships between CPUE and either of the call parameters, but statistical power was low. Williamson’s index of spatial overlap indicated that call detection rate (expressed by a 0–3 calling index) was correlated in time and space with Atlantic croaker CPUE. The correspondence between acoustic parameters and trawl catch rates varied by month and by habitat. In general, the calling index had a higher degree of overlap with this species’ density than did the received sound level of their calls. Classification and regression tree analysis identified calling index as the strongest correlate of CPUE. Passive acoustics has the potential to be an inexpensive means of identifying spatial and temporal trends in abundance for soniferous fish species.
Resumo:
Rockfish (Sebastes spp.) biomass is difficult to assess with standard bottom trawl or acoustic surveys because of their propensity to aggregate near the seafloor in highrelief areas that are inaccessible to sampling by trawling. We compared the ability of a remotely operated vehicle (ROV), a modified bottom trawl, and a stereo drop camera system (SDC) to identify rockfish species and estimate their size composition. The ability to discriminate species was highest for the bottom trawl and lowest for the SDC. Mean lengths and size distributions varied among the gear types, although a larger number of length measurements could be collected with the bottom trawl and SDC than with the ROV. Dusky (S. variabilis), harlequin (S. variegatus), and northern rockfish (S. polyspinis), and Pacific ocean perch (S. alutus) were the species observed in greatest abundance. Only dusky and northern rockfish regularly occurred in trawlable areas, whereas these two species and many more occurred in untrawlable areas. The SDC was able to resolve the height of fish off the seafloor, and some of the rockfish species were observed only near the seafloor in the acoustic dead zone. This finding is important, in that fish found exclusively in the acoustic dead zone cannot be assessed acoustically. For these species, methods such as bottom trawls, long-lines, or optical surveys using line transect or area swept methods will be the only adequate means to estimate the abundance of these fishes. Our results suggest that the selection of appropriate methods for verifying targets will depend on the habitat types and species complexes to be examined.
Resumo:
Rockfishes (Sebastes spp.) are an important component of North Pacific marine ecosystems and commercial fisheries. Because the rocky, high-relief substrate that rockfishes often inhabit is inaccessible to standard survey trawls, population abundance assessments for many rockfish species are difficult. As part of a large study to classify substrate and compare complementary sampling tools, we investigated the feasibility of using an acoustic survey in conjunction with a lowered stereo-video camera, a remotely operated vehicle, and a modified bottom trawl to estimate rockfish biomass in untrawlable habitat. The Snakehead Bank south of Kodiak Island, Alaska, was surveyed repeatedly over 4 days and nights. Dusky rockfish (S. variabilis), northern rockfish (S. polyspinis), and harlequin rockfish (S. variegatus) were the most abundant species observed on the bank. Backscatter attributed to rockfish were collected primarily near the seafloor at a mean height off the bottom of 1.5 m. Total rockfish backscatter and the height of backscatter off the bottom did not differ among survey passes or between night and day. Biomass estimates for the 41 square nautical-mile area surveyed on this small, predominantly untrawlable bank were 2350 metric tons (t) of dusky rockfish, 331 t of northern rockfish, and 137 t of harlequin rockfish. These biomass estimates are 5–60 times the density estimated for these rockfish species by a regularly conducted bottom trawl survey covering the bank and the surrounding shelf. This finding shows that bottom trawl surveys can underestimate the abundance of rockfishes in untrawlable areas and, therefore, may underestimate overall population abundance for these species.
Resumo:
An attempt was made to conduct spatial assessment of the pattern and extent of damage to coastal aquaculture ponds along the east coast of Aceh province in Sumatra, Indonesia, resulting from the tsunami event of 26 December 2004. High-resolution satellite imagery, i.e., SPOT-5 multispectral scenes covering the 700 km stretch of the coast, acquired before and after the tsunami, were digitally enhanced and visually interpreted to delineate pockets of aquaculture ponds that were discerned to be damaged and relatively intact. Field checks were conducted at 87 sites in the four eastern coastal districts. The results indicate that SPOT-5 multispectral imagery was minimally sufficient to detect areas of damaged and relatively intact aquaculture ponds, but the 10-m spatial resolution poses limitations to evaluating the extent of pond damage. Nevertheless, the 60 km swath of the imagery makes it reasonably affordable for large-area assessment to identify pockets of severe damage for targeting more detailed assessments. The image maps produced from a mosaic of the SPOT-5 scenes can also serve as base maps for spatial planning in the challenging task of reconstruction and rehabilitation of the disrupted livelihoods of the coastal communities.
Resumo:
[EN] Parasitic diseases have a great impact in human and animal health. The gold standard for the diagnosis of the majority of parasitic infections is still conventional microscopy, which presents important limitations in terms of sensitivity and specificity and commonly requires highly trained technicians. More accurate molecular-based diagnostic tools are needed for the implementation of early detection, effective treatments and massive screenings with high-throughput capacities. In this respect, sensitive and affordable devices could greatly impact on sustainable control programmes which exist against parasitic diseases, especially in low income settings. Proteomics and nanotechnology approaches are valuable tools for sensing pathogens and host alteration signatures within microfluidic detection platforms. These new devices might provide novel solutions to fight parasitic diseases. Newly described specific parasite derived products with immune-modulatory properties have been postulated as the best candidates for the early and accurate detection of parasitic infections as well as for the blockage of parasite development. This review provides the most recent methodological and technological advances with great potential for biosensing parasites in their hosts, showing the newest opportunities offered by modern “-omics” and platforms for parasite detection and control.