932 resultados para Acid phosphate activity
Resumo:
The aim of the present study was to assess the analgesic activity of the aerial parts of two Hypericum species native to Southern Brazil, H. caprifoliatum and H. polyanthemum. The antinociceptive effect of the H. polyanthemum cyclohexane extract (POL; 180 mg/kg) and of the H. caprifoliatum methanol (MET) and cyclohexane (CH) extracts (90 mg/kg) was evaluated in the hot-plate (ip and po) and writhing (po) tests using male Swiss CF1 mice weighing 22-27 g (N = 10 per group). All extracts displayed antinociceptive effects in the hot-plate test (MET ip = 48%, MET po = 39%, CH ip = 27%, CH po = 50%, POL ip = 74%, and POL po = 49% compared to control). Pretreatment with naloxone (2.5 mg/kg, sc) abolished the effects of CH and POL, and partially prevented the analgesia induced by MET administered by the ip (but not by the po) route. POL and CH (po) significantly reduced the number of writhes induced by acetic acid, while MET was ineffective in this regard. We conclude that the antinociceptive effects of the H. caprifoliatum (CH) and H. polyanthemum (POL) hexane extracts seem to be mediated by the opioid system. Moreover, the antinociceptive activity of the H. caprifoliatum MET extract seems to depend on at least two chemical substances (or groups of substances) with distinct pharmacokinetic profiles and mechanisms of action. Only the naloxone-insensitive component of MET activity showed good bioavailability following oral administration.
Resumo:
Non-metallic implants made of bioresorbable or biostable synthetic polymers are attractive options in many surgical procedures, ranging from bioresorbable suture anchors of arthroscopic surgery to reconstructive skull implants made of biostable fiber-reinforced composites. Among other benefits, non-metallic implants produce less interference in imaging. Bioresorbable polymer implants may be true multifunctional, serving as osteoconductive scaffolds and as matrices for simultaneous delivery of bone enhancement agents. As a major advantage for loading conditions, mechanical properties of biostable fiber-reinforced composites can be matched with those of the bone. Unsolved problems of these biomaterials are related to the risk of staphylococcal biofilm infections and to the low osteoconductivity of contemporary bioresorbable composite implants. This thesis was focused on the research and development of a multifunctional implant model with enhanced osteoconductivity and low susceptibility to infection. In addition, the experimental models for assessment, diagnostics and prophylaxis of biomaterial-related infections were established. The first experiment (Study I) established an in vitro method for simultaneous evaluation of calcium phosphate and biofilm formation on bisphenol-Aglycidyldimethacrylate and triethylenglycoldimethacrylate (BisGMA-TEGDMA) thermosets with different content of bioactive glass 45S5. The second experiment (Study II) showed no significant difference in osteointegration of nanostructured and microsized polylactide-co-glycolide/β-tricalcium phosphate (PLGA /β-TCP) composites in a minipig model. The third experiment (Study III) demonstrated that positron emission tomography (PET) imaging with the novel 68Ga labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) CD33 related sialic-acid immunoglobulin like lectins (Siglec-9) tracer was able to detect inflammatory response to S. epidermidis and S. aureus peri-implant infections in an intraosseous polytetrafluoroethylene catheter model. In the fourth experiment (Study IV), BisGMATEGDMA thermosets coated with lactose-modified chitosan (Chitlac) and silver nanoparticles exhibited antibacterial activity against S. aureus and P. aeruginosa strains in an in vitro biofilm model and showed in vivo biocompatibility in a minipig model. In the last experiment (Study V), a selective androgen modulator (SARM) released from a poly(lactide)-co-ε-caprolactone (PLCL) polymer matrix failed to produce a dose-dependent enhancement of peri-implant osteogenesis in a bone marrow ablation model.
Resumo:
Enterohemolysin produced by Escherichia coli associated with infant diarrhea showed characteristics similar to those of thiol-activated hemolysins produced by Gram-positive bacteria, including inactivation by cholesterol, lytic activity towards eukaryotic cells and thermoinstability. However, enterohemolysin activity was not inactivated by oxidation or by SH group-blocking agents (1 mM HgCl2, 1 mM iodoacetic acid) and the hemolysin (100 µg/ml) was not lethal to mice, in contrast to the lethality of the thiol-activated hemolysin family to animals. Earlier reports showed that intravenous injection of partially purified streptolysin O preparations (0.2 µg) was rapidly lethal to mice. These results suggest that E. coli enterohemolysin is not a thiol-activated hemolysin, despite its ability to bind cholesterol, probably due to the absence of free thiol-group(s) that characterize the active form of the thiol-activated hemolysin molecule.
Resumo:
Fucan is a term used to denote a family of sulfated L-fucose-rich polysaccharides which are present in the extracellular matrix of brown seaweed and in the egg jelly coat of sea urchins. Plant fucans have several biological activities, including anticoagulant and antithrombotic, related to the structural and chemical composition of polysaccharides. We have extracted sulfated polysaccharides from the brown seaweed Dictyota menstrualis by proteolytic digestion, followed by separation into 5 fractions by sequential acetone precipitation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. The anticoagulant activity of these heterofucans was determined by activated partial thromboplastin time (APTT) using citrate normal human plasma. Only the fucans F1.0v and F1.5v showed anticoagulant activity. To prolong the coagulation time to double the baseline value in the APTT, the required concentration of fucan F1.0v (20 µg/ml) was only 4.88-fold higher than that of the low molecular weight heparin Clexane® (4.1 µg/ml), whereas 80 µg/ml fucan 1.5 was needed to obtain the same effect. For both fucans this effect was abolished by desulfation. These polymers are composed of fucose, xylose, uronic acid, galactose, and sulfate at molar ratios of 1.0:0.8:0.7:0.8:0.4 and 1.0:0.3:0.4:1.5:1.3, respectively. This is the fist report indicating the presence of a heterofucan with higher anticoagulant activity from brown seaweed.
Resumo:
The objective of the present study was to determine the levels of amino acids in maternal plasma, placental intervillous space and fetal umbilical vein in order to identify the similarities and differences in amino acid levels in these compartments of 15 term newborns from normal pregnancies and deliveries. All amino acids, except tryptophan, were present in at least 186% higher concentrations in the intervillous space than in maternal venous blood, with the difference being statistically significant. This result contradicted the initial hypothesis of the study that the plasma amino acid levels in the placental intervillous space should be similar to those of maternal plasma. When the maternal venous compartment was compared with the umbilical vein, we observed values 103% higher on the fetal side which is compatible with currently accepted mechanisms of active amino acid transport. Amino acid levels of the placental intervillous space were similar to the values of the umbilical vein except for proline, glycine and aspartic acid, whose levels were significantly higher than fetal umbilical vein levels (average 107% higher). The elevated levels of the intervillous space are compatible with syncytiotrophoblast activity, which maintain high concentrations of free amino acids inside syncytiotrophoblast cells, permitting asymmetric efflux or active transport from the trophoblast cells to the blood in the intervillous space. The plasma amino acid levels in the umbilical vein of term newborns probably may be used as a standard of local normality for clinical studies of amino acid profiles.
Resumo:
Bryothamnion seaforthii, a red alga common to the Northeastern coast of Brazil, was used to prepare the protein fraction F0/60 by ammonium sulfate precipitation. The chromatography of F0/60 on DEAE-Sephadel column resulted in two lectin fractions, PI and PII, which have antinociceptive properties in rodents. We determined the antinociceptive activity of the PII fraction and of a carbohydrate-containing fraction (CF) in mice. The CF was prepared from the dried algae, after digestion with 100 mM sodium acetate, pH 6.0, containing 5 mM cysteine, EDTA and 0.4% papain, at 60ºC. A 10% cetylpyridinium chloride was added to the filtrate, and the precipitate was dissolved with 2 M NaCl:ethanol (100:15, v/v) followed by the carbohydrate precipitation with ethanol. The final precipitate, in acetone, was dried at 25ºC. The PII fraction markedly inhibited acetic acid-induced abdominal writhing after ip administration (control: 27.1 ± 2.20; PII 0.1 mg/kg: 5.5 ± 1.85; 1 mg/kg: 1.6 ± 0.72 writhes/20 min) and after oral administration (control: 32.0 ± 3.32; PII 0.1 mg/kg: 13.1 ± 2.50; 1 mg/kg: 9.4 ± 3.96 writhes/20 min). PII was also effective against both phases of pain induced by 1% formalin (control, ip: 48.2 ± 2.40 and 27.7 ± 2.56 s; PII: 1 mg/kg, ip: 34.3 ± 5.13 and 5.6 ± 2.14 s; control, po: 44.5 ± 3.52 and 25.6 ± 2.39 s; PII 5 mg/kg, po: 26.5 ± 4.67 and 15.3 ± 3.54 s for the 1st and 2nd phases, respectively) and in the hot-plate test. The CF (ip) also displayed significant antinociceptive properties in all tests but at higher doses (1 and 5 mg/kg, ip and po). Thus, CF at the dose of 5 mg/kg significantly inhibited writhes (ip: 7.1 ± 2.47 and po: 14.5 ± 2.40 writhes/20 min) as well as the 1st (po: 19.6 ± 1.74 s) and 2nd (po: 7.1 ± 2.24 s) phases of the formalin test compared to controls ip and po. The antinociceptive effects of both the PII and CF in the formalin and hot-plate tests were prevented at least partially by pretreatment with the opioid receptor antagonist naloxone (2 mg/kg, sc). Moreover, both fractions retained antinociceptive activity in the acetic acid-induced writhing test following heating, a procedure which abolished the hemagglutinating activity of the fraction, presumably due to lectins also present. Finally, both fractions also prolonged the barbiturate-induced sleeping time. These results indicate that carbohydrate molecules present in the PII (26.8% carbohydrate) and CF (21% of the alga dried weight) obtained from B. seaforthii display pronounced antinociceptive activity which is resistant to heat denaturation and is mediated by an opioid mechanism, as indicated by naloxone inhibition.
Resumo:
The aim of the present study was to investigate the effects of daily intragastric administration of bullfrog oil (oleic, linoleic and palmitoleic acid-rich oil), corresponding to 0.4% of body weight for four weeks, on fatty acid composition and oxidative stress (lipid peroxidation and catalase activity) in mouse liver. The activities of aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), and gamma-glutamyltransferase (GGT), biomarkers of tissue injury, were determined in liver homogenates and serum. The proportions of 18:2n-6, 20:4n-6, 20:5n-3, and 22:6n-3 (polyunsaturated fatty acids, from 37 to 60%) in the total fatty acid content were increased in the liver of the bullfrog oil-treated group (P < 0.05) compared to control. At the same time, a significant decrease in the relative abundance of 14:0, 16:0, and 18:0 (saturated fatty acids, from 49 to 25%) was observed. The hepatic content of thiobarbituric acid reactive substances (TBARS) was increased from 2.3 ± 0.2 to 12.3 ± 0.3 nmol TBA-MDA/mg protein and catalase activity was increased from 840 ± 32 to 1110 ± 45 µmol reduced H2O2 min-1 mg protein-1 in the treated group. Bullfrog oil administration increased AST and ALP activities in the liver (from 234.10 ± 0.12 to 342.84 ± 0.13 and 9.38 ± 0.60 to 20.06 ± 0.27 U/g, respectively) and in serum (from 95.41 ± 6.13 to 120.32 ± 3.15 and 234.75 ± 11.5 to 254.41 ± 2.73 U/l, respectively), suggesting that this treatment induced tissue damage. ALT activity was increased from 287.28 ± 0.29 to 315.98 ± 0.34 U/g in the liver but remained unchanged in serum, whereas the GGT activity was not affected by bullfrog oil treatment. Therefore, despite the interesting modulation of fatty acids by bullfrog oil, a possible therapeutic use requires care since some adverse effects were observed in liver.
Resumo:
The brown algae Padina gymnospora contain different fucans. Powdered algae were submitted to proteolysis with the proteolytic enzyme maxataze. The first extract of the algae was constituted of polysaccharides contaminated with lipids, phenols, etc. Fractionation of the fucans with increasing concentrations of acetone produced fractions with different proportions of fucose, xylose, uronic acid, galactose, and sulfate. One of the fractions, precipitated with 50% acetone (v/v), contained an 18-kDa heterofucan (PF1), which was further purified by gel-permeation chromatography on Sephadex G-75 using 0.2 M acetic acid as eluent and characterized by agarose gel electrophoresis in 0.05 M 1,3 diaminopropane/acetate buffer at pH 9.0, methylation and nuclear magnetic resonance spectroscopy. Structural analysis indicates that this fucan has a central core consisting mainly of 3-ß-D-glucuronic acid 1-> or 4-ß-D-glucuronic acid 1 ->, substituted at C-2 with alpha-L-fucose or ß-D-xylose. Sulfate groups were only detected at C-3 of 4-alpha-L-fucose 1-> units. The anticoagulant activity of the PF1 (only 2.5-fold lesser than low molecular weight heparin) estimated by activated partial thromboplastin time was completely abolished upon desulfation by solvolysis in dimethyl sulfoxide, indicating that 3-O-sulfation at C-3 of 4-alpha-L-fucose 1-> units is responsible for the anticoagulant activity of the polymer.
Resumo:
A continuous assay using internally quenched fluorescent peptides with the general sequence Abz-peptidyl-(Dnp)P-OH (Abz = ortho-aminobenzoic acid; Dnp = 2,4-dinitrophenyl) was optimized for the measurement of angiotensin I-converting enzyme (ACE) in human plasma and rat tissues. Abz-FRK(Dnp)P-OH, which was cleaved at the Arg-Lys bond by ACE, was used for the enzyme evaluation in human plasma. Enzymatic activity was monitored by continuous recording of the fluorescence (lambdaex = 320 nm and lambdaem = 420 nm) at 37ºC, in 0.1 M Tris-HCl buffer, pH 7.0, with 50 mM NaCl and 10 µM ZnCl2. The assays can be performed directly in the cuvette of the fluorimeter and the hydrolysis followed for 5 to 10 min. ACE measurements in the plasma of 80 healthy patients with Hip-His-Leu and with Abz-FRK(Dnp)P-OH correlated closely (r = 0.90, P < 0.001). The specificity of the assay was demonstrated by the complete inhibition of hydrolysis by 0.5 µM lisinopril or captopril. Abz-FRK(Dnp)P-OH cleavage by ACE was monitored in rat lung, kidney, heart, and liver homogenates in the presence of a cocktail of inhibitors containing trans-epoxy-succinyl-L-leucylamido-(4-guanido)-butene, pepstatin, phenyl-methylsulfonyl fluoride, N-tosyl-L-phenylalanyl-chloromethyl ketone, and N-tosyl-lysyl-chloromethyl ketone to prevent undesirable hydrolysis. ACE activity in lung, heart and kidney homogenates, but not in liver homogenates, was completely abolished by 0.5 µM lisinopril or captopril. The advantages of the method are the procedural simplicity and the high sensitivity providing a rapid assay for ACE determinations.
Resumo:
Carpotroche brasiliensis is a native Brazilian tree belonging to the Oncobeae tribe of Flacourtiaceae. The oil extracted from its seeds contains as major constituents the same cyclopentenyl fatty acids hydnocarpic (40.5%), chaulmoogric (14.0%) and gorlic (16.1%) acids found in the better known chaulmoogra oil prepared from the seeds of various species of Hydnocarpus (Flacourtiaceae). These acids are known to be related to the pharmacological activities of these plants and to their use as anti-leprotic agents. Although C. brasiliensis oil has been used in the treatment of leprosy, a disease that elicits inflammatory responses, the anti-inflammatory and analgesic activities of the oil and its constituents have never been characterized. We describe the anti-inflammatory and antinociceptive activities of C. brasiliensis seed oil in acute and chronic models of inflammation and in peripheral and central nociception. The mixture of acids from C. brasiliensis administered orally by gavage showed dose-dependent (10-500 mg/kg) anti-inflammatory activity in carrageenan-induced rat paw edema, inhibiting both the edema by 30-40% and the associated hyperalgesia. The acid fraction (200 mg/kg) also showed significant antinociceptive activity in acetic acid-induced constrictions (57% inhibition) and formalin-induced pain (55% inhibition of the second phase) in Swiss mice. No effects were observed in the hot-plate (100 mg/kg; N = 10), rota-road (200 mg/kg; N = 9) or adjuvant-induced arthritis (50 mg/kg daily for 7 days; N = 5) tests, the latter a chronic model of inflammation. The acid fraction of the seeds of C. brasiliensis which contains cyclopentenyl fatty acids is now shown to have significant oral anti-inflammatory and peripheral antinociceptive effects.
Resumo:
We evaluated the antibacterial activities of the crude methanol extract, fractions (I-V) obtained after acid-base extraction and pure compounds from the stem bark of Aspidosperma ramiflorum. The minimum inhibitory concentration (MIC) was determined by the microdilution technique in Mueller-Hinton broth. Inoculates were prepared in this medium from 24-h broth cultures of bacteria (10(7) CFU/mL). Microtiter plates were incubated at 37ºC and the MICs were recorded after 24 h of incubation. Two susceptibility endpoints were recorded for each isolate. The crude methanol extract presented moderate activity against the Gram-positive bacteria B. subtilis (MIC = 250 µg/mL) and S. aureus (MIC = 500 µg/mL), and was inactive against the Gram-negative bacteria E. coli and P. aeruginosa (MIC > 1000 µg/mL). Fractions I and II were inactive against standard strains at concentrations of <=1000 µg/mL and fraction III displayed moderate antibacterial activity against B. subtilis (MIC = 500 µg/mL) and S. aureus (MIC = 250 µg/mL). Fraction IV showed high activity against B. subtilis and S. aureus (MIC = 15.6 µg/mL) and moderate activity against E. coli and P. aeruginosa (MIC = 250 µg/mL). Fraction V presented high activity against B. subtilis (MIC = 15.6 µg/mL) and S. aureus (MIC = 31.3 µg/mL) and was inactive against Gram-negative bacteria (MIC > 1000 µg/mL). Fractions III, IV and V were then submitted to bioassay-guided fractionation by silica gel column chromatography, yielding individual purified ramiflorines A and B. Both ramiflorines showed significant activity against S. aureus (MIC = 25 µg/mL) and E. faecalis (MIC = 50 µg/mL), with EC50 of 8 and 2.5 µg/mL for ramiflorines A and B, respectively, against S. aureus. These results are promising, showing that these compounds are biologically active against Gram-positive bacteria.
Resumo:
In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD) of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH) in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa). The Michaelis-Menten constants (Km: 55 µM) for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM) were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively). A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.
Resumo:
A serine proteinase with thrombin-like activity was isolated from the venom of the Central American pit viper Bothrops asper. Isolation was performed by a combination of affinity chromatography on aminobenzamidine-Sepharose and ion-exchange chromatography on DEAE-Sepharose. The enzyme accounts for approximately 0.13% of the venom dry weight and has a molecular mass of 32 kDa as determined by SDS-PAGE, and of 27 kDa as determined by MALDI-TOF mass spectrometry. Its partial amino acid sequence shows high identity with snake venom serine proteinases and a complete identity with a cDNA clone previously sequenced from this species. The N-terminal sequence of the enzyme is VIGGDECNINEHRSLVVLFXSSGFL CAGTLVQDEWVLTAANCDSKNFQ. The enzyme induces clotting of plasma (minimum coagulant dose = 4.1 µg) and fibrinogen (minimum coagulant dose = 4.2 µg) in vitro, and promotes defibrin(ogen)ation in vivo (minimum defibrin(ogen)ating dose = 1.0 µg). In addition, when injected intravenously in mice at doses of 5 and 10 µg, it induces a series of behavioral changes, i.e., loss of the righting reflex, opisthotonus, and intermittent rotations over the long axis of the body, which closely resemble the `gyroxin-like' effect induced by other thrombin-like enzymes from snake venoms.
Resumo:
The cytotoxicity of the dichloromethane crude extract (DCE), obtained from the aerial parts of Pothomorphe umbellata (L.) Miq (Piperaceae), was evaluated against nine human cancer cell lines (MCF-7, NCI-ADR/RES, OVCAR-3, PC-3, HT-29, NCI-H460, 786-O, UACC-62, K-562). The DCE presented antiproliferative activity with good potency against all cell lines at low concentrations (between 4.0 and 9.5 µg/mL) and with selectivity (1.55 µg/mL) for the leukemia cell line (K-652). DCE (100, 200, 300 and 400 mg/kg, ip) was also evaluated in the Ehrlich ascites tumor model. Both the survival number and the life span of the animals that died increased by at least 45 and 50%, respectively (8 animals per group), demonstrating P. umbellata extract potential anticancer activity. The results of the in vivo antitumor activity prompted the fractionation of the crude extract. The crude extract was submitted to dry column chromatography with dichloromethane-methanol (99:1). The column effluent fractions were extracted with methanol, dried under vacuum yielding fractions FR1 (less polar), FR2 (medium polarity), and FR3 (polar), which were analyzed for their growth inhibition or cytotoxic properties by a 48-h sulforhodamine B cell viability assay by measuring the total protein content. FR1 demonstrated high potency and cytotoxicity, a result compatible with the high toxicity of oxalic acid; FR2, containing 4-nerolidylcathecol, presented the lowest cytotoxic activity compared to the other two fractions but with selectivity for prostate cancer cell line; FR3, containing a mixture of steroids described in the literature as possessing various biological activities, also presented potent anticancer in vitro activity. These results suggest that P. umbellata DCE in vivo antitumor activity may be a consequence of the activity of different active principles.
Resumo:
A novel, rapid and cost-effective trifluoperazine dihydrochloride (TFPH) decolorization assay is described for the screening of antioxidant activity. A chromogenic reaction between TFPH and potassium persulfate at low pH produces an orange-red radical cation with maximum absorption at 502 nm in its first-order derivative spectrum. TFPH was dissolved in distilled water to give a 100 mM solution. The TFPH radical cation solution was made by reacting 0.5 mL of the solution with K2S2O8 (final concentration: 0.1 mM) and diluting to 100 mL with 4 M H2SO4 solution. A linear inhibition of color production was observed with linearly increasing amounts of antioxidants, with correlation coefficients (R²) ranging from 0.999 to 0.983. The antioxidant capacity of standard solutions of an antioxidant was evaluated by comparing with the inhibition curve using Trolox as the standard. Comparison of antioxidant capacity determined with this newly developed TFPH assay and with the well-known 2,2'-azinobis-[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS)-persulfate decolorization assay indicated the efficacy and sensitivity of the procedure. The proposed assay is less expensive (costs about US$4 per 100 assays) and requires only 20 min for preparation of radical cation solution in comparison with ABTS assay, in which almost 12-16 h are required for preparation of a stable ABTS radical cation solution. The present assay has the advantage over ABTS assay that it can be used to measure the antioxidant activity of the samples, which are naturally found at a pH as low as 1, because the radical cation itself has been stabilized at low pH.