999 resultados para AZT (Drug).
Resumo:
During the past century, several epidemics of human African trypanosomiasis, a deadly disease caused by the protist Trypanosoma brucei, have afflicted sub-Saharan Africa. Over 10 000 new victims are reported each year, with hundreds of thousands more at risk. As current drug treatments are either highly toxic or ineffective, novel trypanocides are urgently needed. The T. brucei galactose synthesis pathway is one potential therapeutic target. Although galactose is essential for T. brucei survival, the parasite lacks the transporters required to intake galactose from the environment. UDP-galactose 4'-epimerase (TbGalE) is responsible for the epimerization of UDP-glucose to UDP-galactose and is therefore of great interest to medicinal chemists. Using molecular dynamics simulations, we investigate the atomistic motions of TbGalE in both the apo and holo states. The sampled conformations and protein dynamics depend not only on the presence of a UDP-sugar ligand, but also on the chirality of the UDP-sugar C4 atom. This dependence provides important insights into TbGalE function and may help guide future computer-aided drug discovery efforts targeting this protein.
Resumo:
Purpose. The pH-dependent physicochemical properties of the antimicrobial quinolone, nalidixic acid, were exploited to achieve ‘intelligent’ drug release from a potential urinary catheter coating, poly(2-hydroxyethylmethacrylate) (p(HEMA)), in direct response to the elevated pH which occurs at the onset of catheter infection.
Methods. p(HEMA) hydrogels, and reduced-hydrophilicity copolymers incorporating methyl methacrylate, were loaded with nalidixic acid by a novel, surface particulate localization method, and characterized in terms of pH-dependent drug release and microbiological activity against the common urease-producing urinary pathogen Proteus mirabilis.
Results. The pH-dependent release kinetics of surface-localized nalidixic acid were 50- and 10-fold faster at pH 9, representing the alkaline conditions induced by urease-producing urinary pathogens, compared to release at pH 5 and pH 7 respectively. Furthermore, microbiological activity against P. mirabilis was significantly enhanced after loading surface particulate nalidixic acid in comparison to p(HEMA) hydrogels conventionally loaded with dispersed drug. The more hydrophobic methyl methacrylate-containing copolymers also demonstrated this pH responsive behavior, but additionally exhibited a sustained period of zero-order release.
Conclusions. The paradigm presented here provides a system with latent, immediate infection-responsive drug release followed by prolonged zero-order antimicrobial delivery, and represents an ‘intelligent’, infection-responsive, self-sterilizing biomaterial.
Resumo:
Existing drugs for Alzheimer's disease provide symptomatic benefit for up to 12 months, but there are no approved disease-modifying therapies. Given the recent failures of various novel disease-modifying therapies in clinical trials, a complementary strategy based on repositioning drugs that are approved for other indications could be attractive. Indeed, a substantial body of preclinical work indicates that several classes of such drugs have potentially beneficial effects on Alzheimer's-like brain pathology, and for some drugs the evidence is also supported by epidemiological data or preliminary clinical trials. Here, we present a formal consensus evaluation of these opportunities, based on a systematic review of published literature. We highlight several compounds for which sufficient evidence is available to encourage further investigation to clarify an optimal dose and consider progression to clinical trials in patients with Alzheimer's disease.
Resumo:
GC-MS data on veterinary drug residues in bovine urine are used for controlling the illegal practice of fattening cattle. According to current detection criteria, peak patterns of preferably four ions should agree within 10 or 20% from a corresponding standard pattern. These criteria are rigid, rather arbitrary and do not match daily practice. A new model, based on multivariate modeling of log peak abundance ratios, provides a theoretical basis for the identification of analytes and optimizes the balance between the avoidance of false positives and false negatives. The performance of the model is demonstrated on data provided by five laboratories, each supplying GC-MS measurements on the detection of clenbuterol, dienestrol and 19 beta-nortestosterone in urine. The proposed model shows a better performance than confirmation by using the current criteria and provides a statistical basis for inspection criteria in terms of error probabilities.
Resumo:
The ProSafeBeef project studied the prevalence of residues of anthelmintic drugs used to control parasitic worms and fluke in beef cattle in Ireland. Injured (casualty) cattle may enter the human food chain under certain conditions, verified by an attending veterinarian and the livestock keeper. An analytical survey was conducted to determine if muscle from casualty cattle contained a higher prevalence of anthelmintic drug residues than healthy (full slaughter weight) cattle as a result of possible non-observance of complete drug withdrawal periods. A validated analytical method based on matrix solid-phase dispersive extraction (QuEChERS) and ultra-performance liquid chromatography-tandem mass spectrometry was used to quantify 37 anthelmintic drugs and metabolites in muscle (assay decision limits, CCa, 0.15-10.2 µg kg -1). Of 199 control samples of beef purchased in Irish shops, 7% contained detectable anthelmintic drug residues but all were compliant with European Union Maximum Residue Limits (MRL). Of 305 muscle samples from injured cattle submitted to abattoirs in Northern Ireland, 17% contained detectable residues and 2% were non-compliant (containing either residues at concentrations above the MRL or residues of a compound unlicensed for use in cattle). Closantel and ivermectin were the most common residues, but a wider range of drugs was detected in muscle of casualty cattle than in retail beef. These data suggest that specific targeting of casualty cattle for testing for anthelmintic residues may be warranted in a manner similar to the targeted testing for antimicrobial compounds often applied in European National Residues Surveillance Schemes. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Anthelmintic drugs are widely used to control parasitic infections in cattle. The ProSafeBeef project addressed the need for data on the exposure of European consumers of beef to potentially harmful drug residues. A novel analytical method based on matrix solid-phase dispersive extraction and ultra-performance liquid chromatography-tandem mass spectrometry was validated for 37 anthelmintic drugs and metabolites in muscle (assay decision limits, CCa, = 0.15-10.2 µg kg -1). Seven European countries (France, Spain, Slovenia, Ireland, Italy, Belgium and Portugal) participated in a survey of retail beef purchased in local shops. Of 1061 beef samples analysed, 26 (2.45%) contained detectable residues of anthelmintic drugs (0.2-171 µg kg -1), none above its European Union maximum residue limit (MRL) or action level. Residues detected included closantel, levamisole, doramectin, eprinomectin, moxidectin, ivermectin, albendazole and rafoxanide. In a risk assessment applied to mean residue concentrations across all samples, observed residues accounted for less than 0.1% of the MRL for each compound. An exposure assessment based on the consumption of meat at the 99th percentile of consumption of adults in 14 European countries demonstrated that beef accounted for less than 0.02% of the acceptable daily intake for each compound in each country. This study is the first of its kind to apply such a risk-based approach to an extensive multi-residue survey of veterinary drug residues in food. It has demonstrated that the risk of exposure of the European consumer to anthelmintic drug residues in beef is negligible, indicating that regulation and monitoring is having the desired effect of limiting residues to non-hazardous concentrations. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Anthelmintic drugs are widely used for treatment of parasitic worms in livestock, but little is known about the stability of their residues in food under conventional cooking conditions. As part of the European Commissionfunded research project ProSafeBeef, cattle were medicated with commercially available anthelmintic preparations, comprising 11 active ingredients (corresponding to 21 marker residues). Incurred meat and liver were cooked by roasting (40 min at 190°C) or shallow frying (muscle 8-12 min, liver 14-19 min) in a domestic kitchen. Raw and cooked tissues and expressed juices were analysed using a novel multi-residue dispersive solid-phase extraction method (QuEChERS) coupled with ultra-performance liquid chromatography-tandem mass spectrometry. After correction for sample weight changes during cooking, no major losses were observed for residues of oxyclozanide, clorsulon, closantel, ivermectin, albendazole, mebendazole or fenbendazole. However, significant losses were observed for nitroxynil (78% in fried muscle, 96% in roast muscle), levamisole (11% in fried muscle, 42% in fried liver), rafoxanide (17% in fried muscle, 18% in roast muscle) and triclabendazole (23% in fried liver, 47% in roast muscle). Migration of residues from muscle into expressed cooking juices varied between drugs, constituting 0% to 17% (levamisole) of total residues remaining after cooking. With the exception of nitroxynil, residues of anthelmintic drugs were generally resistant to degradation during roasting and shallow frying. Conventional cooking cannot, therefore, be considered a safeguard against ingestion of residues of anthelmintic veterinary drugs in beef. © 2011 Taylor & Francis.
Resumo:
The nonsteroidal anti-inflammatory drug diclofenac is extremely toxic to Old World Gyps vultures (median lethal dose -0.1-0.2 mg/kg), evoking visceral gout, renal necrosis, and mortality within a few days of exposure. Unintentional secondary poisoning of vultures that fed upon carcasses of diclofenac-treated livestock decimated populations in the Indian subcontinent. Because of the widespread use of diclofenac and other cyclooxygenase-2 inhibiting drugs, a toxicological study was undertaken in turkey vultures (Cathartes aura) as an initial step in examining sensitivity of New World scavenging birds. Two trials were conducted entailing oral gavage of diclofenac at doses ranging from 0.08 to 25 mg/kg body weight. Birds were observed for 7 d, blood samples were collected for plasma chemistry (predose and 12, 24, and 48 h and 7 d postdose), and select individuals were necropsied. Diclofenac failed to evoke overt signs of toxicity, visceral gout, renal necrosis, or elevate plasma uric acid at concentrations greater than 100 times the estimated median lethal dose reported for Gyps vultures. For turkey vultures receiving 8 or 25 mg/kg, the plasma half-life of diclofenac was estimated to be 6 h, and it was apparently cleared after several days as no residues were detectable in liver or kidney at necropsy. Differential sensitivity among avian species is a hallmark of cyclooxygenase-2 inhibitors, and despite the tolerance of turkey vultures to diclofenac, additional studies in related scavenging species seem warranted.
Resumo:
Transcription byRNApolymerase I (Pol-I) is the main driving force behind ribosome biogenesis, a fundamental cellular process that requires the coordinated transcription of all three nuclear polymerases. Increased Pol-I transcription and the concurrent increase in ribosome biogenesis has been linked to the high rates of proliferation in cancers. The ellipticine family contains a number of potent anticancer therapeutic agents, some having progressed to stage I and II clinical trials; however, the mechanism by which many of the compounds work remains unclear. It has long been thought that inhibition of Top2 is the main reason behind the drugs antiproliferative effects. Here we report that a number of the ellipticines, including 9-hydroxyellipticine, are potent and specific inhibitors of Pol-I transcription, with IC50 in vitro and in cells in the nanomolar range. Essentially, the drugs did not affect Pol-II and Pol-III transcription, demonstrating a high selectivity.Wehave shown that Pol-I inhibition occurs by a p53-, ATM/ATR-, and Top2-independent mechanism. We discovered that the drug influences the assembly and stability of preinitiation complexes by targeting the interaction between promoter recognition factor SL1 and the rRNA promoter. Our findings will have an impact on the design and development of novel therapeutic agents specifically targeting ribosome biogenesis.
Resumo:
A plethora of studies have described the in vitro assessment of dissolving microneedle (MN) arrays for enhanced transdermal drug delivery, utilising a wide variety of model membranes as a representation of the skin barrier. However, to date, no discussion has taken place with regard to the choice of model skin membrane and the impact this may have on the evaluation of MN performance. In this study, we have, for the first time, critically assessed the most common types of in vitro skin permeation models - a synthetic hydrophobic membrane (Silescol(®) of 75 µm) and neonatal porcine skin of definable thickness (300-350 µm and 700-750 µm) - for evaluating the performance of drug loaded dissolving poly (methyl vinyl ether co maleic acid) (PMVE/MA) MN arrays. It was found that the choice of in vitro skin model had a significant effect on the permeation of a wide range of small hydrophilic molecules released from dissolving MNs. For example, when Silescol(®) was used as the model membrane, the cumulative percentage permeation of methylene blue 24h after the application of dissolvable MNs was found to be only approximately 3.7% of the total methylene blue loaded into the MN device. In comparison, when dermatomed and full thickness neonatal porcine skin were used as a skin model, approximately 67.4% and 47.5% of methylene blue loaded into the MN device was delivered across the skin 24h after the application of MN arrays, respectively. The application of methylene blue loaded MN arrays in a rat model in vivo revealed that the extent of MN-mediated percutaneous delivery achieved was most similar to that predicted from the in vitro investigations employing dermatomed neonatal porcine skin (300-350 µm) as the model skin membrane. On the basis of these results, a wider discussion within the MN community will be necessary to standardise the experimental protocols used for the evaluation and comparison of MN devices.
Resumo:
Pulmonary disease is the main cause of morbidity and mortality in cystic fibrosis (CF) suffers, with multidrug-resistant Pseudomonas aeruginosa and Burkholderia cepacia complex as problematic pathogens in terms of recurrent and unremitting infections. Novel treatment of pulmonary infection is required to improve the prognosis and quality of life for chronically infected patients. Photodynamic antimicrobial chemotherapy (PACT) is a treatment combining exposure to a light reactive drug, with light of a wavelength specific for activation of the drug, in order to induce cell death of bacteria. Previous studies have demonstrated the susceptibility of CF pathogens to PACT in vitro. However, for the treatment to be of clinical use, light and photosensitizer must be able to be delivered successfully to the target tissue. This preliminary study assessed the potential for delivery of 635 nm light and methylene blue to the lung using an ex vivo and in vitro lung model. Using a fibre-optic light delivery device coupled to a helium-neon laser, up to 11% of the total light dose penetrated through full thickness pulmonary parenchymal tissue, which indicates potential for multiple lobe irradiation in vivo. The mass median aerodynamic diameter (MMAD) of particles generated via methylene blue solution nebulisation was 4.40 µm, which is suitable for targeting the site of infection within the CF lung. The results of this study demonstrate the ability of light and methylene blue to be delivered to the site of infection in the CF lung. PACT remains a viable option for selective killing of CF lung pathogens.
Resumo:
Background A European screening tool (STOPP/START) has been formulated to identify the prescribing of potentially inappropriate medicines (PIMs) and potential prescribing omissions (PPOs). Pharmacists working in community pharmacies could use STOPP/START as a guide to conducting medication use reviews; however, community pharmacists do not routinely have access to patients' clinical records. Objective To compare the PIM and PPO detection rates from application of the STOPP/START criteria to patients' medication details alone with the detection rates from application of STOPP/START to information on patients' medications combined with clinical information. Setting Community Pharmacy. Method Three pharmacists applied STOPP/START to 250 patient medication lists, containing information regarding dose, frequency and duration of treatment. The PIMs and PPOs identified by each pharmacist were compared with those identified by consensus agreement of two other pharmacists, who applied STOPP/START criteria using patients' full clinical records. Main outcome measure The main outcome measures were: (1) PIM and PPO detection rates among pharmacists with access to patients' clinical information compared to PIM and PPO detection rates among pharmacists using patients' medication information only, and (2) the levels of agreement (calculated using Cohen's kappa statistic (k)) for the three most commonly identified PIMs and PPOs. Results Pharmacists with access to patients' clinical records identified significantly fewer PIMs than pharmacists without (p = 0.002). The three most commonly identified PIMs were benzodiazepines, proton pump inhibitors and duplicate drug classes, with kappa (k) statistic agreement ranges of 0.87-0.97, 0.60-0.68 and 0.39-0.85 respectively. PPOs were identified more often (p